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Abstract. Background/Aim: Lung adenocarcinoma (AC)
and squamous cell lung carcinoma (SCC) are two main
subtypes of non-small cell lung cancer. In order to
understand their biological differences, we conducted an in
silico comparative genomic analysis of their expression
profiles. Materials and Methods: We utilized the published
microarray data of 18 SCC samples and 40 AC samples to
discriminate genes differentially expressed in SCC and AC.
Genes were employed to construct a functional module
network and build a support vector machine classifier.
Another set of published non-small cell lung cancer
microarray data was used to test the predictive accuracy of
support vector machine classifier. Results: Our analysis
showed that SCC shows an elevated expression of genes
related to cell division and DNA replication while AC
presents an elevated expression of the genes related to
protein transport and cell junction. ROC analysis
demonstrates that the support vector machine classifier has
a high classification accuracy for AC and SCC.
Conclusion: AC and SCC are distinctively different in
certain biological network modules. This proposes different
pathological mechanisms involved in these two non-small
cell lung cancer subtypes.

Lung cancer is one of major contributions of cancer-related
death worldwide, bringing unbearable agony to patients and
a hefty burden to health system. Since 2008, it has replaced
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liver cancer as the most common malignant tumor in China
(1). About 80% of lung cancers are non-small-cell lung
cancers (NSCLC) (2), which are divided in three major
subtypes: lung adenocarcinoma (AC), squamous cell lung
carcinoma (SCC), and large cell lung carcinoma.

AC (nearly 40% of NSCLCs) and SCC (about 30% of
NSCLCs) are more common than large cell lung carcinomas
(2, 3). They compose over half of total lung cancer cases. AC
is more associated to lung cancer patients without a history
of smoking, although smoking is an important risk factor for
lung cancer, especially in developed countries (4). SCC is
more common in males than in females. It is closely
associated with lung cancer patients having a smoking habit
(5). These facts suggest that AC and SCC have different
pathological mechanisms.

Microarray-based gene expression profiling has been used
to describe the expression profiles of AC and SCC (6, 7).
The genes differentially expressed between AC and SCC
were identified and some of them are reported to be
biomarkers for non-small cell lung cancer (8, 9). However,
it remains unclear what the potential genes affecting the
pathological process of AC or SCC are. So far, many studies
only focused on a small portion of signature genes of AC or
SCC and their possible roles in NSCLCs (10-13). Most
information from AC and SCC microarray data is
overlooked. The biological processes and molecular
pathways hidden in these data are worth being uncovered.

The long-term survival rate of non-small cell lung cancer
patients is abysmal (about 15% of 5-year overall survival
and 8-10% of 10-year overall survival) (14, 15). The
improvement of the patient’s long-term survival rate
requires for correct diagnosis of NSCLC subtype in early
stage and proper treatment plan, both of which demand the
understanding of the molecular basis underlying different
NSCLC subtypes. Using the published AC and SCC
microarray data (16), we conducted a comparative genomic
analysis of AC and SCC expression profiles. We focused on
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Figure 1. The highly interconnected modules extracted from the biological process network. The circles stand for module and the arrows stands for
sub-network flow. The number beside SCC means the number of SCC up-regulated genes in the module and the number beside AC means the number

of AC up-regulated genes in the module.

the differences between AC and SCC in their biological
process, cellular component and molecular function
networks. The major differences in their biological
networks were identified in this study. In addition, we built
a support vector machine (SVM) classifier based on genes
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involved in these networks. It has a possible value in AC
and SCC diagnosis. We also used another set of NSCLC
microarray data to test for the accuracy of our classifier (8),
which proved the high predictive accuracy of our SVM
classifier.
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Figure 2. The highly interconnected modules extracted from the cellular component network. The circles stand for module and the arrows stand for
sub-network flow. The number beside SCC indicates the number of SCC up-regulated genes in the module and the number beside AC means the

number of AC up-regulated genes in the module.

Materials and Methods

Microarray data. Microarray data including 18 SCC samples and
40 AC samples were downloaded from the GEO database
(GSE10245). This data set was used for gene expression profile
analysis and building of a support vector machine classifier. The
test microarray data for support vector machine classifier were also
downloaded from GEO database (GSE19804). It has 60 NSCLC
samples (56 adenocarcinoma samples, 3 bronchioloaveolar
carcinoma samples, and 1 squamous cell carcinoma sample). Both
microarray data sets are normalized counts and were collected
using Affymetrix Human Genome U133 Plus 2.0 Array (GPL570)
(8, 16).

Statistical methods for identifying differentially expressed genes.
One-way ANOVA test was employed to compare the mean
normalized counts between AC and SCC samples in the first data
set. The R package was used to perform statistical analysis and a p-
value smaller than 0.01 was considered statistically significant.

Functional enrichment analysis for differentially expressed genes.
We used the DAVID online resource to perform the gene-GO term
enrichment analysis for the differentially expressed genes between
AC and SCC (17, 18). The differentially expressed genes were
classified as AC up-regulated genes and SCC up-regulated genes.

Functional module network construction. The differentially
expressed genes mapped by DAVID were used for building a
functional module network. BINGO was used to cluster genes into
functional modules and create the biological network based on these
modules (19). MCODE was used to find the highly interconnected
nodes in the networks (20).

Building a support vector machine classifier. The support vector
machine classifier for AC and SCC was built with LIBSVM (21).
The LIBSVM parameters were optimized with grid-search and 5-
fold cross-validation. Only differentially expressed genes mapped
by DAVID database were used as SVM features. We selected linear
kernel for our SVM classifier, because the number of samples is
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Figure 3. The highly interconnected modules extracted from the
molecular function network. The circles stand for module and the
arrows stands for sub-network flow. The number beside SCC means the
number of SCC up-regulated genes in the module and the number beside
AC means the number of AC up-regulated genes in the module.

greatly lesser than the number of features (22). Both the training
and test data sets were normalized to the range [0, 1].

Results

Differentially expressed genes between AC and SCC. Using
the normalized gene expression data from the first microarray
data set, we identified 3,544 differentially expressed genes
between AC and SCC through ANOVA comparison (p-value
<0.01). According to their expression levels in AC and SCC,
we classified them into two categories: AC up-regulated genes
and SCC up-regulated genes. Among 3,544 differentially
expressed genes, 1,485 genes are up-regulated in AC while
2,059 genes are up-regulated in SCC.

DAVID analysis of differentially expressed genes. In order to
understand the possible functions of these differentially
expressed genes, we performed the GO term enrichment
analysis for them using DAVID functional annotation
software (17, 18). 2,857 out of 3,544 differentially expressed
genes can be mapped in the DAVID database. 1,216 of them
are AC up-regulated genes and 1,641 of them are SCC up-
regulated genes. The functional enrichment result is shown
in Table I. According to the result, the possible functions of
differentially expressed genes between AC and SCC are
mainly involved in cell cycle, condensed chromosome,
purine nucleotide binding and DNA replication.
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Figure 4. ROC analysis of the support vector machine classifier built on
2,857 mapped differentially expressed genes between AC and SCC.

Functional module network analysis of differentially
expressed genes. Although the DAVID analysis of these
differentially expressed genes yielded the information about
their possible functions, it is still unclear how these functions
contribute to the unique biological profile of AC or SCC. In
order to investigate the relationship between these functions
and the molecular basis of AC or SCC, we constructed
biological interaction networks represented by these
functions using a Cytoscape plugin, BINGO (19). The
networks of biological process, cellular component and
molecular function were constructed. Nevertheless, these
networks are too huge and too complex for us to analyze
(data not shown). Thus, we used another Cytoscape plugin,
MCODE, to refine these networks (20). The highly
interconnected nodes were extracted from these networks
with MCODE. These nodes are actually the important
functional sub-networks in the whole network. We identified
two functional sub-networks in biological process network,
one sub-network in cellular component network and one sub-
network in molecular function network (Figures 1, 2 and 3).
The sub-networks in biological process network are
responsible for DNA replication and mitosis (Figure 1A and
B). They are mainly composed of SCC up-regulated genes.
The highly interconnected modules in cellular component
network are made of intracellular organelles which
ultimately contribute to spindle apparatus, and the highly
interconnected modules in molecular function network carry
out the function of purine and adenyl nucleotide binding
(Figure 2 and 3). About two-third of the genes involved in
these modules are up-regulated in SCC. In all important sub-
networks, there are more genes up-regulated in SCC than in
AC. We also searched the modules with more AC up-
regulated genes than SCC up-regulated ones and the result is
shown in Table II. Although they are not highly
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Table 1. DAVID functional annotation analysis of differentially expressed genes between AC and SCC.

Category Term Benjamini-corrected FDR
Go: Biological process M phase 1.0E-14
Cell cycle 1.4E-14
Cell cycle phase 4.7E-13
M phase of mitotic cell cycle 9.1E-12
Mitosis 24E-11
Nuclear division 24E-11
Cell cycle process 45E-11
Organelle fission 6.7E-11
Cell division 8.7E-11
Go: Cellular component Condensed chromosome 1.0E-8
Spindle 3.1E-8
Nucleoplasm 4.9E-8
Condensed chromosome kinetochore 3.7E-8
Chromosome, centromeric region 7.2E-8
Intracellular organelle lumen 7.3E-8
Nuclear lumen 8.7E-8
Go: Molecular function Purine nucleotide binding 2.1E-4
Purine ribonucleotide binding 9.2E-4
Ribonucleotide binding 1.1E-3
Microtubule binding 9.9E-4
Nucleotide binding 9.3E-4
Tubulin binding 1.0E-3
Adenyl nucleotide binding 1.0E-2
KEGG pathway Cell cycle 1.5E-5
DNA replication 1.9E-2
Glycerophospholipid metabolism 1.3E-2

interconnected with other modules, these modules show that
AC is more active in expression of the genes related to
protein transport, endoplasmic reticulum, Golgi apparatus,
and cell junction.

The performance of support vector machine classifier. The
functional module network analysis shows that SCC up-
regulated genes play a main part in DNA replication and cell
cycle while AC up-regulated genes are mainly involved in
protein transport and cell junction. They are useful features
for separating these two major subtypes of NSCLC. We used
2,857 DAVID-mapped genes to build the support vector
machine classifier for SCC and AC. 18 SCC samples and 40
AC samples from GSE10245 were used as training data set.
We selected linear kernel function for building support vector
machine classifier, because the number of genes is much
larger than the number samples. First, we used the training
data set to test the predictive actuary of our classifier. The
result of training data set showed a classification accuracy of
100%. Secondly, we used another set of microarray data to
test the predictive actuary of the classifier. This microarray
data set includes 56 adenocarcinoma samples, 3
bronchioloaveolar carcinoma samples, and 1 squamous cell
carcinoma sample. When tested with these samples, the

classifier showed an AUC score of 0.9831 in the ROC
analysis (Figure 4). The classifier successfully identified AC
and SCC samples, and predicted 2 bronchioloaveolar
carcinoma samples as AC and 1 bronchioloaveolar carcinoma
sample as SCC. Bronchioloaveolar carcinoma is usually
considered as a subtype of lung adenocarcinoma (23, 24), so
the predictive accuracy of this classifier on AC is 98.3%
(58/59). This result proves its possible value in AC and SCC
diagnosis.

Discussion

The identification of differentially expressed genes between
AC and SCC could help elucidate their different oncogenic
mechanisms. Our study shows that there are more SCC up-
regulated genes than AC up-regulated ones in the
differentially expressed genes. It suggests that the
pathological process underlying SCC is more complex than
that of AC. The pathogenesis of SCC might need more steps
of somatic mutation which, in turn, recruited more
abnormally-expressed genes. The clinical statistics show that
SCC is less common than AC among NSCLCs (2, 3), which
circumstantially support the statement above. The males with
a history of tobacco use are more susceptible to SCC while
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Table II. The functional modules in biological networks with more AC up-regulated genes than SCC up-regulated ones.

Network category Module

The number of AC up-regulated genes vs.
the number of SCC up-regulated ones

Biological process
Protein transport

Endomembrane system

Organelle membrane
Endoplasmic reticulum

Golgi membrane

Endoplasmic reticulum part
Endoplasmic reticulum membrane

Cellular component

Nuclear membrane-endoplasmic reticulum network

Golgi apparatus part

Golgi apparatus

Subsynaptic reticulum
Apicolateral plasma membrane
Apical junction complex
Anchoring junction

Occluding junction

Tight junction

Establishment of protein localization

84 vs. 73
84 vs. 71
168 vs. 124
194 vs. 160
123 vs. 86
61 vs. 43
87 vs. 57
80 vs. 51
82 vs. 51
68 vs. 47
109 vs. 68
88 vs. 59
18 vs. 10
18 vs. 9
21 vs. 18
15vs. 8
15vs. 8

AC is the most common type of lung cancer in non-smokers
(4, 5). Carcinogens like benzopyrene in tobacco smoke could
cause and facilitate the mutation of normal cells into SCC
cancer cells. AC is more common among lung cancer
patients without smoking habit. Although the significance of
genetic factors in AC development is unknown, they
definitely play a part in the carciongenesis of AC (25, 26).
In the present study, the majority of the identified
differentially expressed genes are annotated by DAVID
database. The DAVID analysis shows that their biological
process, cellular component, molecular function, and KEGG
pathway are mainly involved in cell cycle, condensed
chromosome, purine nucleotide binding, and DNA
replication, respectively. Since one major feature of cancer
is uncontrolled proliferation, it is expected that their
functions are somewhat related to cell division. The
functional module network analysis of these genes revealed
more detailed information about the difference between SCC
and AC. In all highly interconnected modules in biological
process, cellular component, and molecular function
network, there are more SCC up-regulated genes than AC
up-regulated ones. Their elevated expression in SCC
indicates that SCC has a faster rate of DNA replication and
cell division than AC, which is consistent with the former
study (27). In cellular component sub-network, the organelle
genes form a sub-network which finally contributes to
spindle apparatus. As an indispensable cellular structure for
cell division, the high expression level of spindle genes in
SCC confirmed its hyperactivity in cell division. The
modules in molecular function sub-network are responsible
for nucleotide and ribonucleotide binding. The fact that SCC
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has more up-regulated genes in these modules suggests its
fast rate of DNA synthesis. On the other hand, AC up-
regulated genes are more concentrated in the modules related
to protein transport, endoplasmic reticulum, Golgi apparatus,
and cell junction. While these modules do not form an
interconnected sub-network, they still suggest that AC might
be a result of abnormal expression of cell-cell interaction
genes and cell junction genes. The functional module
network analysis indicates the different molecular basis for
AC or SCC carcinogenesis. Although the crucial genes
influencing the process of AC or SCC carcinogenesis remain
unknown, our study proposes that different drugs and
different treatment strategies should be considered for
different NSCLC subtypes in lung cancer therapy.

The SVM classifier built on the DAVID-mapped genes shows
a high accuracy for identifying AC samples. Due to the limited
number of SCC samples in test data set, its predictive accuracy
for SCC still needs to be evaluated. We have confidence in the
predictive power of our classifier. At least, when tested with the
training data set, its predictive accuracy for both AC and SCC is
100%. Its performance on bronchioloaveolar carcinoma is
intriguing. It classified 2 bronchioloaveolar carcinoma samples
as AC and 1 bronchioloaveolar carcinoma sample as SCC.
Bronchioloaveolar carcinoma is commonly regarded as a
subtype of AC (23, 24). However, our result suggests that it
might be not the case. If our result were correct,
bronchioloaveolar carcinoma should be viewed as a mix of
several lung cancer variants rather than a single variant of
lung cancer. Further studies are required to elucidate the
pathological classification of this less common type of lung
cancer.
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In conclusion, our analysis showed that 3,544 genes are
differentially expressed between AC and SCC. SCC has
greater number of up-regulated, differentially expressed,
genes than AC. The functional enrichment analysis shows
that these genes are mainly involved in cell cycle and DNA
replication, and the functional module network analysis
indicates that SCC and AC have different molecular bases
and biological profiles. SCC has an elevated expression of
the genes related to cell division and DNA replication while
AC has an elevated expression of the genes related to protein
transport and cell junction. These results indicate the
different pathological mechanisms of SCC and AC. Further
investigations are required to identify the genes and the
molecular pathways controlling these mechanisms, if we
want to exploit them as bases for NSCLC treatment. We also
used the differentially expressed genes to build a support
vector machine classifier for SCC and AC. It demonstrates
the high predictive accuracy for AC and has a potential value
in NSCLC diagnosis.
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