Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Genomics & Proteomics
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Cancer Genomics & Proteomics

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Review ArticleReview
Open Access

Molecular Genetics and Targeted Therapies for Paediatric High-grade Glioma

KATHRINE S. RALLIS, ALAN MATHEW GEORGE, ANNA MARIA WOZNIAK, CAROLA MARIA BIGOGNO, BARBARA CHOW, JOHN GERRARD HANRAHAN and MICHAIL SIDERIS
Cancer Genomics & Proteomics July 2022, 19 (4) 390-414; DOI: https://doi.org/10.21873/cgp.20328
KATHRINE S. RALLIS
1Barts Cancer Institute, Queen Mary University of London, London, U.K.;
2Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: k.s.rallis@smd16.qmul.ac.uk
ALAN MATHEW GEORGE
3Liverpool School of Medicine, University of Liverpool, Liverpool, U.K.;
4Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ANNA MARIA WOZNIAK
2Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CAROLA MARIA BIGOGNO
2Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BARBARA CHOW
5UCL Cancer Institute, University College London, London, U.K.;
6GKT School of Medicine, King’s College London, London, U.K.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JOHN GERRARD HANRAHAN
7Cambridge University Hospitals NHS Foundation Trust, Cambridge, U.K.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MICHAIL SIDERIS
8Women’s Health Research Unit, Queen Mary University of London, London, U.K.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Brain tumours are the leading cause of paediatric cancer-associated death worldwide. High-grade glioma (HGG) represents a main cause of paediatric brain tumours and is associated with poor prognosis despite surgical and chemoradiotherapeutic advances. The molecular genetics of paediatric HGG (pHGG) are distinct from those in adults, and therefore, adult clinical trial data cannot be extrapolated to children. Compared to adult HGG, pHGG is characterised by more frequent mutations in PDGFRA, TP53 and recurrent K27M and G34R/V mutations on histone H3. Ongoing trials are investigating novel targeted therapies in pHGG. Promising results have been achieved with BRAF/MEK and PI3K/mTOR inhibitors. Combination of PI3K/mTOR, EGFR, CDK4/6, and HDAC inhibitors are potentially viable options. Inhibitors targeting the UPS proteosome, ADAM10/17, IDO, and XPO1 are more novel and are being investigated in early-phase trials. Despite preclinical and clinical trials holding promise for the discovery of effective pHGG treatments, several issues persist. Inadequate blood-brain barrier penetration, unfavourable pharmacokinetics, dose-limiting toxicities, long-term adverse effects in the developing child, and short-lived duration of response due to relapse and resistance highlight the need for further improvement. Future pHGG management will largely depend on selecting combination therapies which work synergistically based on a sound knowledge of the underlying molecular target pathways. A systematic investigation of multimodal therapy with chemoradiotherapy, surgery, target agents and immunotherapy is paramount. This review provides a comprehensive overview of pHGG focusing on molecular genetics and novel targeted therapies. The diagnostics, genetic discrepancies with adults and their clinical implications, as well as conventional treatment approaches are discussed.

Key Words:
  • Paediatric high-grade glioma
  • targeted therapy
  • genetics
  • epigenetics
  • precision medicine

Intracranial and intraspinal tumours are the most common solid tumours in paediatrics (1). They are the second leading cause of cancer-associated death in children and adolescents under the age of 19 in the USA and Canada (1), with an average annual age-adjusted incidence of 6.06 per 100,000 in the USA between 2012 and 2016 (2). Brain tumours are now the leading cause of paediatric-cancer-associated death worldwide, surpassing deaths from childhood leukaemia (3). Gliomas represent the highest proportion of childhood brain tumours (4, 5) accounting for 60% of paediatric brain tumour cases (5, 6), of which approximately half are classified as high grade (6, 7).

Classification. Gliomas are brain tumours of neuroepithelial origin and are derived from glial cells which are responsible for neuronal support (5). The classification of gliomas into grades follows the histopathological criteria set out by the World Health Organisation (WHO) (8) (Table I).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

World Health Organization (WHO) tumour classification for gliomas including tumour biology, histology, and prognosis.

Tumour behaviour, survival rates, and treatment strategies vary according to WHO grades I-IV. Generally, gliomas are divided into three categories: low-grade gliomas (LGG) (WHO grade I-II), high-grade gliomas (HGG) (WHO grade III-IV) and diffuse intrinsic pontine gliomas (DIPG) which is a unique HGG entity with peak incidence between 6 and 9 years of age (9). DIPG belongs to the category of malignant midline gliomas, also known as diffuse midline gliomas (DMGs), which occur in the thalamus, brainstem, or spine, in contrast to non-midline, hemispheric HGGs which include anaplastic astrocytoma and glioblastoma multiforme (GBM). While 5-year survival rates for paediatric LGG are as high as 95%, HGG prognosis remains poor with reports indicating only 15-35% 5-year survival rates and median overall survival (OS) of 10-18 months (8), despite continuous advances in surgical and adjuvant chemoradiation therapies (10, 11). There is still no effective treatment for DIPG which carries only 10% 2-year survival, decreasing to 2% at 5 years (12-14). Hence, there is an evident need to develop more effective treatments than the current standard of aggressive surgery with chemoradiation, particularly owing to the considerable toxicities and subsequent longterm sequelae in developing children and adolescents.

Objective. Significant research efforts are aimed at understanding the underlying tumour biology, genetics, and molecular profile of HGG to help uncover possible therapeutic targets for novel targeted agents (15). This review discusses the diagnostics, molecular genetics, driver oncogenic mutations of childhood malignant glioma along with recently discovered genetic and epigenetic aberrations, the clinical implications of these, and possible treatment approaches including molecular targeted therapies.

Diagnostics

Molecular diagnostic classification. Genetics offer significant insight into the prognosis, clinical course, and treatment optimisation of glioma. Hence, although histology-based diagnosis and grading remains the most reliable, quick and cost-effective diagnostic method for brain tumour classification, in 2016, the WHO updated its brain tumour classification system to include molecular characteristics with histology for tumour grading (8, 16). An example classification algorithm is shown in Figure 1. Tumours are classified into astrocytomas, oligoastrocytomas, oligodendrogliomas or glioblastomas with further subclassification. Information from tumour histological appearance, genetic testing, and tumour grading are integrated in reaching a final diagnostic classification of the tumour entity. Of note, molecular features may override information from histological assessment in reaching a final tumour classification.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Simplified classification algorithm for diffuse gliomas incorporating molecular genetics in addition to histology. Tumours are classified into astrocytomas, oligoastrocytomas, oligodendrogliomas or glioblastomas with further subclassification. Information from tumour histological appearance, genetic testing, and tumour grading are integrated in reaching a final diagnostic classification of the tumour entity. Note, molecular features may override information from histological assessment in reaching a final tumour classification. Information adapted from WHO classification. IDH, Isocitrate dehydrogenase; WT, wild-type; MUT, mutant; ATRX, alpha-thalassemia/mental retardation X-linked gene; TP53, tumour protein P53; NOS, not otherwise specified.

Diagnostic discrepancies by age. Paediatric cancers differ from those in adults in terms of clinico-biological behaviour, genetics, and molecular characteristics. Tumour location classically differentiates paediatric brain tumours from those in adults, with the former occurring in infratentorial brain regions (brainstem and cerebellum) and the latter occurring in the supratentorial compartment (cerebral hemispheres and midline structures above the tentorium) (17, 18). Paediatric HGGs (pHGG) display a different mutation profile to adult HGGs (aHGG) (19-21) as children display more stable genomes with fewer mutations, however, pHGG and aHGG are similar histologically and cannot be differentiated by histology alone (22). Due to their distinct genetic alterations, pHGGs and aHGGs should be considered as separate tumour entities (23, 24). Routine diagnostic assessment of diffusely infiltrating HGG for all ages should at least include formalin-fixed and paraffin-embedded tumour samples with haematoxylin and eosin (H&E) staining and reticulin silver staining in addition to immunohistochemistry against glial fibrillary acidic protein (GFAP), p53, and Ki-67 (proliferation marker) (22). However, recommendations for additional staining differ between pHGG and aHGG. In the paediatric population, staining for microtubule-associated protein 2 (MAP2), oligodendroglial lineage marker (Olig-2) and alpha-thalassemia/mental retardation X-linked (ATRX) can be useful, while isocitrate dehydrogenase 1 (IDH1) is of less use in young children who rarely display this mutation (22).

Molecular Genetics of pHGG

Advances in genome-wide array-based sequencing technologies, allowing for whole genome and exome sequencing, have contributed ground-breaking insights into the genetic alterations underpinning pHGG, uncovering unique molecular drivers (25-29) (Table II). The subsequent paragraphs in this section discuss the role of core signalling pathways, histone modifications, and other genetic mutations in pHGG.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table II.

Select genetic and epigenetic molecular drivers in paediatric high-grade glioma with respective genomic analysis techniques used for profiling.

Core mutated signalling pathways

Three core signalling pathways commonly implicated in aHGG have also been implicated in pHGG but with different frequency of mutated effectors (25). These pathways include the receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphatidylinositide 3-kinase (PI3K) pathway, p53, and retinoblastoma (RB) pathway (Figure 2) (30). Within each signalling pathway multiple different effectors can be mutated at different frequencies. The mutation profile helps delineate HGG subtypes but also indicates potential therapeutic targets (15) (Figure 2).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Core signalling pathways implicated in paediatric high-grade glioma depicting the types of mutations affecting different signalling components and associated targeted therapy inhibitors. (A) Constitutively activated receptor tyrosine kinase (RTK), RAS-activated MAPK/ERK and PI3K/AKT/mTOR signalling pathways; (B) p53-regulated retinoblastoma (RB) signalling pathway. Figure 2A adapted with permission from Mueller et al., 2020 (42).

EGFR and PDGFRA. Components of the RTK/RAS/PI3K pathway and downstream effectors are commonly activated in pHGGs through gain of function and loss of function mutations, gene fusions, and gene amplifications (25). EGFR (ERBB1) and PDGFRA are both receptor components of the RTK/RAS/PI3K signalling cascade which is affected in 90% of aHGG (25). Yet, in pHGG EGFR mutations are less frequent (31, 32), with gene amplification and EGFRvIII overexpression detected in only few (4%) pHGGs (33-35). In contrast, amplification and/or activating mutation of PDGFRA, which encodes platelet-derived growth factor receptor-α (PDGFRα), has been shown to drive glioma formation in mural models resembling human diffuse HGGs (36, 37). This is the most common event in DIPG and paediatric non-brainstem high-grade glioma (pNBS-HGG), occurring in 20-30% of pHGG (20, 21, 24, 26, 27, 29, 36, 38, 39) whilst rarely occurring in aHGG (40).

Other RTKs and NTRK. RTK gene fusions have also been identified in ALK, ROS1, FGFR, MET, and NRTK genes particularly in a subset of hemispheric HGG, specifically GBM and in younger infants, corresponding to heterogeneous survival rates (41-43). Concurrence of point mutations or amplifications affecting at least two of the MET, ERBB2 (HER-2), EGFR and PDGFRA genes suggest that genomic activation may be a mechanism for co-activated RTKs (44, 45). Neurotrophic receptor kinase (NTRK) gene fusions involving the kinase domain of the three NTRK genes and the five N-terminal fusion partners have been observed in 10% of NBS-HGGs and 4% of DIPGs (24). These drive glioma formation in vivo by activation of the PI3K/MAPK signalling (24). NTRK gene fusions have been identified in 40% of infantile (<3 years old) NBS-HGGs yet this percentage is much lower in the paediatric population overall (24, 24, 43, 46). They have also been observed in aGBM and pLGG though with far less recurrence (47-49). The prognosis for pNBS-HGG in children <3 years of age is significantly better than for older children (50). NTRK can be a valuable therapeutic target for this group (25).

BRAF. The serine threonine protein kinase BRAF is a component of the RAS/RAF/MEK/ERK signalling cascade downstream of the MAPK pathway which regulates cellular survival, metabolism, and proliferation. BRAF point mutations which substitute valine to glutamic acid at position 600 (BRAFV600E) resulting in activation of the MAPK pathway are observed in 10-15% of pHGG (51, 52) and 17% of pLGG (53) and co-occur with PDGFRA amplification (40) and homozygous CDKN2A deletions (54, 55). BRAF mutations occur in cortical brain tumours and have not been identified in DIPG. BRAF mutations and CDKN2A deletions dysregulate cellular proliferation (54) which is thought to drive malignant transformation of pLGG to a subset of secondary pHGGs (41, 56) which are associated with slightly improved OS compared to primary HGGs (42, 57).

PI3K–AKT–mTOR. Constitutive PI3K–AKT–mTOR pathway activation is a hallmark of GBM (30, 44). Mutations, amplifications and deletions affecting the PI3K complex, and its downstream effectors occur in different frequencies in aHGG and pHGG. Mutually exclusive mutations in PIK3CA (encoding for the p110α catalytic PI3K subunit) and PIK3R1 (encoding for the regulatory subunit) are observed in 7-21% and 6-11% of aHGGs respectively (58). PIK3R1 mutations are observed in similar frequency in pHGG, including DIPG. PIK3CA mutations are more frequently observed in DIPG (15-25%) and less common in supratentorial HGG (5%) which corresponds to adult presentations (39, 59-64). The tumour suppressor gene PTEN on chromosome 10q is mutated in 5-15% of pHGGs while loss of 10q heterozygosity is observed in 30% (23, 28, 29, 31, 59). These figures are lower than aHGGs which feature 25-40% PTEN mutation and 80% loss of 10q heterozygosity (65-67). Occasionally, AKT amplification (2%) and FOXO mutation (1%) may contribute to downstream signalling activation (30, 44).

RB pathway. RB pathway dysregulation is common in both pNBS-HGGs and DIPG. CDKN2A codes for the tumour suppressor genes p16/INK4a and ARF which keep cell cycle progression in check along with p21 (68). Homozygous deletion of CDKN2A and CDKN2B is exclusive to pNBS-HGG tumours and almost entirely absent in DIPG (20, 21, 26). Notably, 30% of DIPGs feature amplifications in CDK4/6 or CCND1/2/3 (26, 29, 38, 69), which code for cyclin D-dependent kinases and cyclin D family members, respectively. These amplifications facilitate pRB phosphorylation which catalyses the release of E2F1 transcription factor to promote transcription of genes required for G1 to S phase transition (68). p53 pathway. TP53 mutations are more common in pHGG (35-37%) than aHGG (20-29%) (70), with higher frequencies reported in DIPGs (42-50%) than in pNBS-HGGs (18-35%) (24, 32, 39). TP53 mutations are also less frequent (9%) in children <3 years and these cases also observe a better prognosis (71). p53 pathway mutation frequencies in DIPGs (42-50%) and pNBS-HGGs rise up to 83% when including alterations to other pathway elements such as CDKN2A (ARF) and MDM2 (25).

Histone modifications

H3.1/H3.3 K27M and G34R/V: In 2012, two independent studies on paediatric GBM (23) and DIPG (72) produced landmark discoveries implicating recurrent somatic histone H3 gene mutations in pHGG tumorigenesis (Figure 3) (25) which are extremely rare in aHGG (23). These recurrent mutations occur on histone tails, at or near important modification sites, specifically affecting genes that encode for the histone variants H3.3 (encoded by H3F3A) and less frequently H3.1 (encoded by HIST1H3B, HIST1H3C) (72, 73). All H3 mutations in pHGG are heterozygous and only 1 of 16 genes encoding H3 is mutated in any tumour, which clearly indicates a dominant mutation that causes gain of function (25). Mutations result in amino acid substitutions at two key residues in the N-terminal of histone tails: lysine-to-methionine at position 27 (K27M) and glycine-to-arginine (or less frequently glycine-to-valine) at position 34 (G34R/V) (74). K27M and G34R/V are mutually exclusive, present in 38% of paediatric and young adult (<30 years) HGGs (70) and are not observed in LGGs (23, 72, 75). They are also mutually exclusive with recurrent point mutations in IDH1 (23).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Epigenetic modifications in paediatric high-grade glioma with associated targeted therapy inhibitors: (A) H3K27M mutations depress the function of the histone methyltransferase (HMT) complex polycomb repressive complex 2 (PRC2) resulting in preferential KDM6-mediated histone demethylation and transcriptional activation which can be countered with HDAC inhibitors. Loss of function mutations on KDM6 result in preferential PRC2-mediated histone methylation and transcriptional repression which can be countered with EZH2 inhibitors or BET inhibitors. IDH1/2 mutations result in DNA hypermethylation via TET2 inhibition from the oncometabolite 2-hydroxyglutarate which can be countered by IDH1 and IDH2 inhibitors; (B) G34R/V H3.3 and K27M H3.1/3.3 mutations maintain transcriptional activity and upregulate oncogenic drivers by interfering with the H3K36me3 active mark and reducing H3K27 global trimethylation, respectively. Figure 3A adapted with permission from Mueller et al., 2020 (42) and Long et al., 2017 (195).

Notably, H3 mutations are associated with specific anatomical regions in the brain. G34R/V mutations are observed in non-midline cortical tumours (hemispheric and supratentorial) while K27M mutations are found in midline paediatric non-brainstem HGGs (pNBS-HGGs), midline GBM, and DIPG (thalamus, cerebellar vermis, brainstem, and spine) (23, 72, 76). Moreover, the specific mutation frequency and amino acid substitutions at histone H3 differ between DIPG and pNBS-HGG (25). In DIPGs, H3 mutations are observed in 78% of cases, where 60% of mutations are in H3F3A and 11-31% are in HIST1H3B. Conversely, in pNBS-HGG only 35% exhibit H3 mutations, where H3F3A and HIST1H3B K27M substitutions account for 19% and 3% of cases respectively, while 14% are somatic mutations in H3F3A leading to G34R substitution which is not observed in DIPG (72).

During malignant transformation, dysregulation of the histone modification machinery affects the recruitment of transcription factors and therefore patterns of gene expression. Histone H3 mutations were shown to be of particular significance as they rewire the epigenome to maintain cell pluripotency and deliver oncogenic drivers such as PDGFRA and MYCN in K27M and G34R/V respectively (77, 78). The H3K27M mutation results in a reduction of the global H3K27 trimethylation (H3K27me3) by depressing the function of the histone methyltransferase (HMT) complex polycomb repressive complex 2 (PRC2) (42) (Figure 3). H3K27me3 is associated with transcriptional silencing and chromatin condensation, inhibiting the expression of genes that oppose normal development and differentiation (79). Hence, H3K27 hypomethylation leads to transcriptional activity at these loci (80). A recent systematic review and meta-analysis totalling 474 pHGG patients across 6 studies concluded that the presence of H3K27M mutation was independently and significantly associated with a worse prognosis (HR 3.630, p<0.001) and shorter overall survival (2.3 years; p=0.008) compared to their counterparts without the mutation (81). Targeting H3K27 through lysine-specific demethylase 1 (LSD1) inhibition via catalytic inhibitors has been shown to exhibit selective cytotoxicity and promote an immune gene signature that increases NK cell killing in vitro and in vivo, representing a therapeutic opportunity for pHGG (82). Conversely, G34R/V does not lead to global hypomethylation of H3K27M but instead interferes with the regulation of H3K36me3 which is an activating mark for gene expression (77, 83). Alternatively, downregulation of the H3K36me3 active mark may occur through mutation of the H3K36 trimethyl-transferase SET domain containing 2 (SETD2) which occurs in a mutually exclusive pattern with H3F3A G34R/V mutations (84). SETD2 loss-of-function mutations are present in 15% of pHGG and 8% of aHGG and is exclusively found in cerebral tumours (84). H3K36me3 depletion following SETD2 downregulation leads to an increased spontaneous mutation frequency and chromosomal depletion (85).

Novel data science and network reconstruction techniques have enabled the identification and delineation of transcriptional networks that reprogram high-grade glioma behaviour patterns. These transcriptional regulatory networks act as enhances and regulators of oncogenes and oncohistone variants observed in paediatric glioma (i.e., K27M and G34 V/R) (86). Moreover, three-dimensional genomic structural variations have the potential to hijack transcriptional enhancers and gene coamplification contributing to the epigenetic landscape and contributing to tumorigenesis in pHGG (87). The cellular context also interacts with genetics, as oligodendrocyte precursor cells have been shown to exhibit greater tumorigenic potential to more differentiated malignant cell counterparts, partly due to sustained by PDGFRA signalling. This signifies potential candidate therapeutic targets (88).

ATRX/DAXX. Mutations affecting the chromatin remodelling histone chaperone complex ATRX/DAXX, responsible for H3.3 incorporation into telomeres, pericentric heterochromatin and actively transcribed regions (89, 90), have also been associated with paediatric gliomagenesis (91). ATRX/DAXX mutations were identified in 31% of pGBM samples, and in 100% of tumours harbouring G34R/V H3.3 mutations suggesting a synergy between the two mutations (23), which are thought to be key in a subgroup of very young patients with HGG (22). There is also an association of H3.3 and or ATRX mutation with TP53 mutations (23). ATRX and DAXX loss is strongly associated with alternative lengthening of telomeres (ALT), particularly in concurrent ATRX, H3F3A and TP53 mutations (92). ALT is a telomerase-independent telomere maintenance mechanism which enhances telomere lengthening leading to uncontrolled cellular proliferation. ALT is a common phenotype in pGBM and it typically presents with hypomethylation (23, 75).

Other epigenetic regulators. Recurrent mutations in other histone writers and erasers and in chromatin-remodelling genes including MLL, KDM5C, KDM3A and JMJD1C have also been reported (24). These often co-occur with H3 mutations as observed in 91% of DIPG and 48% of hemispheric HGG (24).

Other genetic signatures

Recurrent methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter has been observed in pHGG with studies indicating a 30% recurrence in pHGG overall (53) and 40-50% recurrence in paediatric GBM (54, 55). MGMT promoter methylation is more frequent in adult GBM (45%) compared to pHGG (16-50%) (93). Mutations in IDH, which encodes for isocitrate dehydrogenase, are common in aHGG and almost entirely absent in pHGG (5%) (75, 94). Most IDH mutations occur in adolescents >14 years with one study showing 35% recurrence (52). Despite their overall rarity in pHGG, IDH mutations are present in a subset of paediatric patients suggesting a biological similarity of this subgroup with aHGG (42, 94, 95). In adult tumours, IDH mutations are associated with better prognosis (96). Normally, IDH1/2 enzymes convert isocitrate to α-ketoglutarate in the citric acid cycle. IDH mutations result in neomorphic enzymes that convert α-ketoglutarate to the oncometabolite 2-hydroxyglutarate which competitively inhibits the function of TET enzymes responsible for DNA demethylation and transcriptional activation (97). TET inhibition is associated with carcinogenesis across malignancies (97, 98). ACVR1 (ALK2) which encodes a receptor serine threonine kinase that mediates signal transduction for bone morphogenic protein (BMP), is mutated in 20-32% of DIPGs and frequently cooccurs with H3.1 K27M substitutions (44-46). Similarly to H3K27M, ACVR1 mutations are only observed in brainstem pHGGs and in DIPG patients of younger age, thus delineating DIPG subgroups (25). Lastly, homozygous loss at 8p12 leading to loss of ADAM3A confirmed by quantitative realtime PCR (qPCR) was observed in 16% of pHGGs including one DIPG patient making it the most commonly deleted gene in one study (28).

Conventional Treatment Strategies and Long-Term Side Effects

Surgery. Initial treatment for pHGG is surgery aiming at maximal safe surgical resection as the amount of resection correlates to prognosis (99). Gross-total resection (GTR) is of paramount importance as it offers the only chance for significant survival benefit in patients. Subtotal resection increases mortality by 50-100%, while the difference in survival can reach up to 35 months (100). Yet, even when complete radiographic GTR is achieved, some cancerous cells may still remain due to the infiltrative nature of the disease as it is practically impossible to achieve clear margin GTR without significant morbidity or morality (10, 15). Therefore, adjuvant therapy is offered to reduce chances of local recurrence.

Radiotherapy. Focal radiation therapy within tumour margins has become the mainstay adjuvant therapy for children >3 years old (50, 59), while younger children are treated with a radiation-sparring approach using sole chemotherapy to prevent radiotherapy-induced sequelae (101). Neurocognitive problems, endocrinopathy, vasculopathy with stroke, psychosocial issues and secondary malignancies are common long term adverse effects of radiation (Table III) (102-106). The standard dose of radiation for pHGG is 50-60Gy focal radiation which is delivered in 180-200cGy daily dose fractions over 6 weeks (107). Hyper-and hypo-fractionation has not shown consistent benefit for pHGG (107). Still, hypofractionation is being investigated for recurrent DIPG (108).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table III.

Late term adverse effects of treatment regimens for paediatric high-grade glioma. Information collated from Roddy and Mueller, 2016 (190).

Re-irradiation in the setting of recurrent disease has typically been avoided due to dose-dependent radiotoxicities (41, 109) though this is changing as recent studies demonstrate superior median survival times from re-irradiation which was well-tolerated in pHGG (110); re-irradiation is currently being trialled for progressive or recurrent DIPG (111). Studies are investigating combination of immunotherapies such as PD-1 immune checkpoint inhibitors with re-irradiation (112). Combination immunotherapy with radiation is set to replace standard chemoradiotherapy protocols in other solid tumours (113). Radiotherapy can modulate the immune system and mount an immune response causing immunogenic cell death by enhancing tumour antigen retrieval (114). Radiotherapy can initiate innate and adaptive immunity by conferring pro-immunogenic effects in the tumour microenvironment (115, 116).

Chemotherapy. Temozolomide (TMZ) is the standard chemotherapeutic treatment offered for aHGGs as it increases 2-year survival rates from 10.4% to 26.5% when combined with radiation (117). Even though multimodality therapy with radiation and TMZ offers minimal survival benefit in children (93, 118), TMZ is still typically used in current clinical practice for newly diagnosed pHGG not enrolled in clinical trial due to tolerability and ease of administration (15). TMZ works as a DNA alkylating agent, eventually leading to singlestranded and double-stranded DNA breaks to induce cell cycle arrest at G2/M and apoptosis. It achieves this by methylating DNA at the N-7 or O-6 positions of guanine residues (119). TMZ is well-tolerated with minor toxicities including grade I thrombocytopenia, neutropenia, or nausea even with long-term therapy extending to 85 cycles (120). Although alkylating agents are known to increase secondary cancer risk, particularly acute myeloid leukaemia, there is no evidence to support such risks with TMZ (121). However, long-term effects of TMZ have not been studied in children yet.

Precision Medicine and Novel Treatments

There is a clear need to optimise the therapeutic management of pHGG to improve survival, reduce recurrence rates, but also minimize long-term adverse effects associated with conventional aggressive treatments. Several clinical trials are underway to investigate new molecular targeted therapies (Table IV), but also chemoradiation sensitization strategies, and immunotherapies.

View this table:
  • View inline
  • View popup
Table IV.

Active clinical trials investigating novel targeted molecular therapies for paediatric high-grade gliomas.

MGMT promoter methylation as a biomarker for TMZ treatment response. TMZ resistance is mediated via the DNA repair gene MGMT. MGMT removes methyl adducts from the O6-guanine position of damaged DNA, thus, reversing the DNA damage induced by the action of TMZ. Hence, high levels of MGMT indicate resistance to TMZ. In contrast, in a subset of patients with MGMT promoter methylation, resulting in transcriptional silencing of the gene, the efficiency of DNA repair was reduced and response to TMZ treatment was significantly higher (13.7 months with methylated MGMT promoter vs. 2.7 months without) (122). Therefore, MGMT promoter methylation is a predictive biomarker for good TMZ response and can aid in treatment stratification (123).

NTRK, EGFR, FGRF and MET inhibitors. NTRK inhibitors currently being trialled for pHGG include larotrectinib) (124-127) and entrectinib (NCT02650401) which also targets ALK, ROS1. RTK inhibitors targeting VEGF, ALK, WEE1, BCR-ABL and RET are also being investigated as monotherapy and as combination therapies in phase I/II trials for pHGG (Table IV).

EGFR overexpression in glioma is associated with greater tumour invasion and tumour cells resistance to treatment (128-130). In aHGG, studies of EGFR inhibition using novel third generation drugs such as osimertinib (AZD9291) have demonstrated effectiveness in overcoming resistance and mediating tumour regression (131). For pHGG, ongoing phase II trials are investigating the use of drugs such as nimotuzumab (NCT03620032, NCT04532229, NCT00561873, NCT006000 54), erlotinib (NCT00418327) and cetuximab (NCT01884740) individually and in combination with mTOR inhibitors (NCT02233049). The limitation observed with EGFR inhibition is high recurrence rates due to acquired tumour resistance tumour (132). However, combination therapy, especially with PI3K inhibitors, has been shown to improve treatment response in pHGG patients (133, 134). The efficacy of FGFR inhibitors is being investigated in phase II trials for advanced solid tumours and recurrent/progressive pHGG using erdafitinib (NCT03210714) and cabozantinib (NCT02885324), respectively.

MET signalling and high levels of c-MET are associated with poor prognosis in GBM patients (135), thereby rendering it a potential therapeutic target. A phase I trial is investigating volitinib monotherapy in patients with recurrent/refractory primary CNS tumours including pHGG (NCT03598244). Volitinib has previously demonstrated preclinical efficacy in rodents with MET-amplified GBM (136).

BRAF and MEK inhibitors (MAPK pathway). BRAF and MAPK inhibitors are promising potential treatments for pHGG tumours displaying BRAFV600E mutations having shown remarkable efficacy in melanoma patients with the same mutation. One case report demonstrated complete response in a 12-years old child treated with vemurafenib for BRAFV600E positive GBM (137). Other reports show benefit in BRAFV600E positive pHGG from the MEK inhibitor trametinib and BRAFV600E-specific inhibitors dabrafenib and vemurafenib (52, 138). Studies are investigating BRAFV600E and MEK inhibition with dabrafenib and trametinib in a subset of HGG (NCT03975829, NCT04201457) and in combination with radiotherapy (NCT03919071). In pLGGs, BRAF inhibition is promising with 40% objective response rate and prolonged stable disease with a relatively well-tolerated side effect profile (139-142). Yet, similarly to adults, resistance rates to BRAF inhibitors are higher in the pHGGs compared to pLGGs given that concurrent mutations such as in CDKN2A/B and ATRX are more often (53). Paradoxical tumour hyper-progression observed in LGG treated with the unselective BRAF inhibitor sorafenib highlights the importance of careful consideration of the molecular targets of such agents in clinical trial setting (143, 144). Combination of MEK and BRAF inhibitors reduces squamous cell carcinoma risk observed with BRAF monotherapy in adult melanoma patients and improves survival and response rates (144, 145).

PI3K/mTOR inhibitors. In August 2020, the brain-penetrant PI3K/mTOR inhibitor paxalisib (GDC-0084) was granted rare paediatric disease FDA-designation approval for DIPG based on significantly improved survival benefit observed in a phase II trial of patients with newly-diagnosed GBM with unmethylated O6-MGMT promoter status who had completed initial radiation with concomitant TMZ (146). A first-in-paediatric phase I study is underway to investigate the safety and preliminary antitumor action of paxalisib in DIPG and DMG (NCT03696355). Additionally, the dual PI3K and mTOR inhibitor LY3023414 is undergoing phase II trial in advanced solid tumours including pHGG (NCT03213678). Combination of PI3K/mTOR inhibitors with dasatinib, an oral inhibitor against BCR-ABL and Src-family tyrosine kinases, is undergoing phase II investigation in PDGFRA-mutated tumours (NCT03352427). Recent in vitro studies suggest that dual EGFR and PI3K inhibition with or without HDAC inhibition is a viable therapeutic option for adult and paediatric HGG warranting further investigation in vivo (133, 147). PI3K/mTOR inhibitors also represent an attractive therapeutic target for IDH-mutant gliomas as they repress the oncometabolite 2-hydroxyglutarate, the levels of which may serve as a response-prediction biomarker (148).

CDK4/6 inhibitors. Clinically, CDK4/6 inhibitors function by inhibiting the CDK4/6-dependent phosphorylation of the RB1 protein (NCT02255461) (54, 149). The dependent interaction of CDK4/6 inhibitors with RB1, means the patient’s RB1 status must be screened prior to therapy (144). Murine DIPG models have demonstrated a significant survival benefit from cyclin/CDK complex inhibition using a highly selective non-ATP competitive inhibitor of CDK4/6, namely PD-0332991 (54). Yet, clinical data from CDK4/6 inhibitor monotherapy has not been promising (146, 150). Combination of CDK4/6 inhibitors with mTOR and MEK inhibitors (56), radiotherapy, or chemotherapeutics are potentially viable options (146, 151, 152) and are being investigated in clinical trials (NCT03709680, NCT03355794, NCT03434262) following superior pre-clinical results compared to CDK4/6 inhibitor monotherapy (151, 152). Ensuring sufficient blood-brain-barrier penetrance is paramount when investigating CDK4/6 agents with the different agents demonstrating different brain-penetrance (152, 153). In the case of ribociclib, co-administration of the ABCB1 inhibitor elacridar dramatically improves brain penetrance (154).

HDAC inhibitors. Histone deacetylase inhibitors (HDACi) have shown promising therapeutic potential in many malignancies and have been investigated in HGG due to the high frequency of K27M and G34R/V mutations. HDACis prevent the condensation of chromatin and genetic silencing caused by histone tail deacetylation (Figure 3A). Phase I and II trials have investigated the efficacy of HDAC inhibitors vorinostat, panobinostat, romidepsin and valproic acid for paediatric and adult HGG (155). However, results from HDACi monotherapy appear disappointing. Combination therapy may improve prognosis, though further research is necessary. Ongoing trials are investigating the combination of PI3K and HDACi in a single drug agent (fimepinostat, CUDC-907) in pHGG (NCT02909777, NCT03893487). Encouraging preliminary results were reported in a phase I study of MTX110, a water-soluble form of panobinostat, which allows for convection-enhanced delivery (CED) at potentially chemotherapeutic doses directly to the tumour site via catheter system (CED or fourth ventricle infusion) thereby bypassing the blood-brain barrier (NCT03566199).

DRD2/ClpP (ONC201). ONC201, a small molecule inhibitor, crosses the blood-brain barrier and directly antagonises the dopamine receptors D2 (DRD2) and D3 (156). ONC201 also activates the mitochondrial caseinolytic protease P (ClpP) protein which is dysregulated in cancer (157, 158). Both DRD2 antagonism and ClpP activation from ONC201 result in ATF4 and CHOP transcription factor-mediated upregulation of the pro-apoptotic TRAIL receptor DR5 which induces cancer cell death (42, 156). Anecdotal clinical evidence suggests that ONC201 mediates significant tumour regression in young adults and children with H3K27M-mutated HGGs (159, 160) which is supported by pre-clinical data (161). A phase II trial is underway to investigate ONC201 in paediatric H3K27M-positive gliomas (NCT03416530).

Interestingly, mitochondrial DNA copy number depletion has been associated with cancers including pHGG and is postulated to underlie the molecular basis for the Warburg effect (162). Shifting glucose metabolism to mitochondrial oxidation with kinase modulators significantly inhibits pHGG viability, and pairing this therapeutic strategy with metformin to simultaneously target mitochondrial function was shown to disrupt energy homeostasis of tumour cells, increasing DNA damage and apoptosis (162).

NTRK, Neurotrophic tyrosine receptor kinase; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; c-MET, mesenchymal epithelial transition factor; VEGF, vascular endothelial growth factor; ALK, anaplastic lymphoma kinase; WEE1, nuclear serine/threonine-protein kinase associated with western equine encephalitis; SETD2, SET domain containing 2; BRAF, serine/threonine-protein kinase B-Raf; MEK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; mTOR, mechanistic target of rapamycin; BCR-ABL, breakpoint cluster region protein-abelson murine leukemia viral oncogene homolog 1; RET, rearranged during transfection proto-oncogene; CDK, cyclin-dependant kinases; HDAC, histone deacetylase; DRD2, dopamine receptor D2; ClpP, caseinolytic protease proteolytic subunit;IDH, isocitrate dehydrogenase; PARP, poly-ADP ribose polymerase; UPS, ubiquitin/proteasome system; ADAM10, a disintegrin and metalloproteinase domaincontaining protein 10; IDO, indoleamine 2,3-dioxygenase; SINE, short interspersed nuclear element; EZH2, enhancer of zeste homolog 2; BET, bromodomain and extraterminal domain; PKC, protein kinase C; PD-1, programmed cell death protein 1; BMI 1, B cell-specific moloney murine leukaemia virus integration site 1; FTI, farnesyltransferase inhibitor; CNS, central nervous system; HGG, high-grade glioma; GBM, glioblastoma multiforme; DIPG, diffuse intrinsic pontine glioma; DMG, diffuse midline glioma; LGG, low-grade glioma.

IDH inhibitors and PARP inhibitors. IDH inhibitors induce a dose-dependent reduction of the oncometabolite 2-hydroxyglutarate and partially reverse histone modification and DNA hypermethylation inhibiting tumour growth in vivo and in vitro (163). Ivosidenib (AG-120) and enasidenib (AG-221), two reversible selective inhibitors of IDH1- and IDH2-mutant enzymes, respectively, have received FDA-approval for acute myeloid leukaemia (AML). Early phase trials demonstrate an acceptable safety profile from IDH1/2 inhibitors in advanced solid tumours including glioma, however, further research is necessary to evaluate efficacy (164, 165).

IDH mutations inhibit DNA double-strand break repair by homologous recombination. Hence, inhibiting the alternative method of repair [base-excision repair (BER)] via poly ADP-ribose polymerase (PARP) inhibitors is an effective strategy to mediate synthetic lethality of IDH-mutant cancer cells (166). BER also reverses DNA-alkylation damage from TMZ, thus the addition of PARP inhibitors to TMZ may increase efficacy compared to TMZ alone (41). BGB-290, a PARP inhibitor which can penetrate the blood-brain barrier, is being investigated in combination with TMZ for IDH-mutant glioma (NCT03749187). In a phase I study, the PARP inhibitor olaparib reliably penetrated recurrent GBM at radiosensitizing concentrations (167). A phase II study of olaparib in advanced solid tumours including pHGG is underway (NCT03233204). Veliparib is also being investigating in combination with TMZ (NCT03581292).

UPS proteasome inhibitors. The ubiquitin-proteasome system (UPS) maintains cellular homeostasis by regulating intracellular protein degradation through polyubiquitination and subsequent degradation of the ubiquitin-tagged target (168). Proteosome inhibitors act on this pathway, preferentially inducing programmed cell death in transformed malignant cells (168). Marizomib is being tested for the first time in children in a phase I trial for paediatric DIPG, individually, and in combination with the HDACi panobinostat (NCT04341311). In adults, following successful assessment in phase I trials for newly diagnosed and recurrent GBM, marizomib is being investigated in phase III trial in combination with standard TMZ-based radiochemotherapy (NCT03345095).

ADAM10/17 inhibitors. Currently, 22 different ADAMs (a disintegrin and metalloproteases) have been identified with functions of adhesion, sperm-egg fusion, angiogenesis, migration, cell survival, degradation, and proliferation (169, 170). ADAM10/17 overexpression is observed in cancer cell lines while deficiency decreases growth (170). INCB7839, a novel, orally available, potent and selective inhibitor of ADAM10 and 17 proteases designed to block EGFR pathway activation, has been evaluated in phase I and II trials for previously treated solid tumours, with promising results especially in breast cancer (171). However, the dose-limiting toxicity of INCB7839 monotherapy was deep venous thrombosis. A phase I study is investigating INCB7839 in children with recurrent/progressive HGGs (NCT04295759).

IDO inhibitors. Indoleamine 2,3-dioxygenase (IDO) acts as an immune checkpoint preventing autoimmunity. In cancer, increased IDO levels enable tumour immune escape. IDO-inhibition reinstates cancer immune surveillance (172). In a preclinical GBM model, the addition of IDO-blocking drugs to TMZ and radiotherapy enhanced survival due to a tumour-directed inflammatory response (173). In a phase I trial, the combination of the IDO inhibitor Indoximod with radiation and chemotherapy in upfront paediatric DIPG was tolerable and offered prolonged survival to historical controls (174). Hence, a phase II trial is underway (NCT04049669). IDO inhibition in combination with radiotherapy, immunotherapy, and immunogenic chemotherapies was serve as an important adjunct in turning immunogenically ‘cold’ tumours into ‘hot’ (175). The importance of tumour immune profiling in pHGG to characterise treatment responsiveness and further enhance therapeutic decision-making has been highlighted in phase II trials (176).

Selective inhibitors of nuclear export (SINE) and XPO1. XPO1 (exportin 1) mediates nuclear export of cellular proteins during interphase (177). Overexpression is associated with poor prognosis across cancers including gliomas (178). Selective inhibitors of nuclear export (SINE), such as Selinexor, inhibit XPO1 and have demonstrated safety and broad antitumour efficacy in a phase I study in adults with advanced solid tumours including GBM (179). Selinexor is being investigated in phase I trial in children and young adults with recurrent or refractory solid tumours or HGGs (NCT02323880).

Conclusion

Paediatric HGG is a highly heterogeneous disease characterised by distinct molecular signatures which may be used for diagnostics, clinical characterisation, and treatment optimisation. Despite advances in targeted molecular therapies, pHGG features poor outcomes. Future clinical trials of pHGG will stratify patients into subgroups according to their molecular characteristics through biomarker identification. Numerous clinical trials are underway to investigate novel targeted therapeutic agents. Combination therapies may offer clinical benefit and require further systematic investigation.

Acknowledgements

Figures created with BioRender.com. Figure 2A and 3A adapted with permission from Mueller T, Stucklin ASG, Postlmayr A, Metzger S, Gerber N, Kline C, Grotzer M, Nazarian J and Mueller S: Advances in targeted therapies for pediatric brain tumors. Curr Treat Options Neurol 22: 43, 2020, published under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Figure 3A adapted with permission from Long W, Yi Y, Chen S, Cao Q, Zhao W and Liu Q: Potential new therapies for pediatric diffuse intrinsic pontine glioma. Front Pharmacol 8: 495, 2017, published under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Footnotes

  • ↵† These Authors contributed equally to this study.

  • ↵# These Authors contributed equally to this study.

  • Authors’ Contributions

    Conceptualization: K.S.R.; Reviewing the literature: K.S.R.; Drafting the article: K.S.R, A.M.G.; Figure and table illustrations: K.S.R, A.M.G., A.M.W., C.M.B., B.C.; Revising the article: K.S.R., A.M.G., A.M.W., C.M.B., B.C., J.G.H., M.S.; Supervising the work: J.G.H., M.S.; Final approval of the version to be published: K.S.R., A.M.G., A.M.W., C.M.B., B.C., J.G.H., M.S.

  • Conflicts of Interest

    The Authors declare that they have no competing interests.

  • Received April 10, 2022.
  • Revision received April 30, 2022.
  • Accepted May 9, 2022.
  • Copyright © 2022, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Johnson KJ,
    2. Cullen J,
    3. Barnholtz-Sloan JS,
    4. Ostrom QT,
    5. Langer CE,
    6. Turner MC,
    7. McKean-Cowdin R,
    8. Fisher JL,
    9. Lupo PJ,
    10. Partap S,
    11. Schwartzbaum JA and
    12. Scheurer ME
    : Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev 23(12): 2716-2736, 2014. PMID: 25192704. DOI: 10.1158/1055-9965.EPI-14-0207
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Ostrom QT,
    2. Cioffi G,
    3. Gittleman H,
    4. Patil N,
    5. Waite K,
    6. Kruchko C and
    7. Barnholtz-Sloan JS
    : CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol 21(Suppl 5): v1-v100, 2019. PMID: 31675094. DOI: 10.1093/neuonc/noz150
    OpenUrlCrossRefPubMed
  3. ↵
    1. Curtin SC,
    2. Minino AM and
    3. Anderson RN
    : Declines in cancer death rates among children and adolescents in the United States, 1999-2014. NCHS Data Brief (257): 1-8, 2016. PMID: 27648773.
  4. ↵
    1. Blionas A,
    2. Giakoumettis D,
    3. Klonou A,
    4. Neromyliotis E,
    5. Karydakis P and
    6. Themistocleous MS
    : Paediatric gliomas: diagnosis, molecular biology and management. Ann Transl Med 6(12): 251, 2018. PMID: 30069453. DOI: 10.21037/atm.2018.05.11
    OpenUrlCrossRefPubMed
  5. ↵
    1. Diwanji TP,
    2. Engelman A,
    3. Snider JW and
    4. Mohindra P
    : Epidemiology, diagnosis, and optimal management of glioma in adolescents and young adults. Adolesc Health Med Ther 8: 99-113, 2017. PMID: 28989289. DOI: 10.2147/AHMT.S53391
    OpenUrlCrossRefPubMed
  6. ↵
    1. Rizzo D,
    2. Ruggiero A,
    3. Martini M,
    4. Rizzo V,
    5. Maurizi P and
    6. Riccardi R
    : Molecular biology in pediatric high-grade glioma: impact on prognosis and treatment. Biomed Res Int 2015: 215135, 2015. PMID: 26448930. DOI: 10.1155/2015/215135
    OpenUrlCrossRefPubMed
  7. ↵
    1. Bauchet L,
    2. Rigau V,
    3. Mathieu-Daudé H,
    4. Fabbro-Peray P,
    5. Palenzuela G,
    6. Figarella-Branger D,
    7. Moritz J,
    8. Puget S,
    9. Bauchet F,
    10. Pallusseau L,
    11. Duffau H,
    12. Coubes P,
    13. Trétarre B,
    14. Labrousse F,
    15. Dhellemmes P, Société Française de Neurochirurgie Pédiatrique, Société Française de Neurochirurgie, Société Française de Neuropathologie and Association des Neuro-Oncologues d’Expression Française
    : Clinical epidemiology for childhood primary central nervous system tumors. J Neurooncol 92(1): 87-98, 2009. PMID: 19020806. DOI: 10.1007/s11060-008-9740-0
    OpenUrlCrossRefPubMed
  8. ↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G,
    4. von Deimling A,
    5. Figarella-Branger D,
    6. Cavenee WK,
    7. Ohgaki H,
    8. Wiestler OD,
    9. Kleihues P and
    10. Ellison DW
    : The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6): 803-820, 2016. PMID: 27157931. DOI: 10.1007/s00401-016-1545-1
    OpenUrlCrossRefPubMed
  9. ↵
    1. Tejada S,
    2. Aquilina K,
    3. Goodden J,
    4. Pettorini B,
    5. Mallucci C,
    6. van Veelen ML and
    7. Thomale UW
    : Biopsy in diffuse pontine gliomas: expert neurosurgeon opinion-a survey from the SIOPE brain tumor group. Childs Nerv Syst 36(4): 705-711, 2020. PMID: 32020269. DOI: 10.1007/s00381-020-04523-8
    OpenUrlCrossRefPubMed
  10. ↵
    1. Broniscer A and
    2. Gajjar A
    : Supratentorial high-grade astrocytoma and diffuse brainstem glioma: two challenges for the pediatric oncologist. Oncologist 9(2): 197-206, 2004. PMID: 15047924. DOI: 10.1634/theoncologist.9-2-197
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Pollack IF,
    2. Agnihotri S and
    3. Broniscer A
    : Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 23(3): 261-273, 2019. PMID: 30835699. DOI: 10.3171/2018.10.PEDS18377
    OpenUrlCrossRefPubMed
  12. ↵
    1. Hoffman L,
    2. Van zanten S,
    3. Colditz N,
    4. Baugh J,
    5. Chaney B,
    6. Lane A,
    7. Fuller C,
    8. Miles L,
    9. Hawkins C,
    10. Bartels U,
    11. Bouffet E,
    12. Goldman S,
    13. Leary S,
    14. Foreman N,
    15. Packer R,
    16. Warren K,
    17. Broniscer A,
    18. Kieran M,
    19. Minturn J,
    20. Comito M,
    21. Broxon E,
    22. Shih C,
    23. Khatua S,
    24. Chintagumpala M,
    25. Carret A,
    26. Hassall T,
    27. Ziegler D,
    28. Gottardo N,
    29. Dholaria H,
    30. Lerme B,
    31. Kirkendall J,
    32. Doughman R,
    33. Hoffmann M,
    34. Wollman M,
    35. O’keefe R,
    36. Benesch M,
    37. Gerber N,
    38. Bailey S,
    39. Solanki G,
    40. Massimino M,
    41. Biassoni V,
    42. Cvrlje F,
    43. Hulleman E,
    44. Drissi R,
    45. Nazarian J,
    46. Jabado N,
    47. Von bueren A,
    48. Pietsch T,
    49. Gielen G,
    50. Sturm D,
    51. Jones D,
    52. Pfister S,
    53. Jones C,
    54. Hargrave D,
    55. Sanchez E,
    56. Bison B,
    57. Warmuth-metz M,
    58. Leach J,
    59. Jones B,
    60. Van vuurden D,
    61. Kramm C and
    62. Fouladi M
    : HG-75 clinical, radiological, and histo-genetic characteristics of long-term survivors of diffuse intrinsic pontine glioma: a collaborative report from the International and SIOP-E DIPG Registries. Neuro-Oncology 18(Suppl 3): iii65.3-iii66, 2017. DOI: 10.1093/neuonc/now073.71
    OpenUrlCrossRef
    1. Janjua MB,
    2. Ban VS,
    3. El Ahmadieh TY,
    4. Hwang SW,
    5. Samdani AF,
    6. Price AV,
    7. Weprin BE and
    8. Batjer H
    : Diffuse intrinsic pontine gliomas: Diagnostic approach and treatment strategies. J Clin Neurosci 72: 15-19, 2020. PMID: 31870682. DOI: 10.1016/j.jocn.2019.12.001
    OpenUrlCrossRefPubMed
  13. ↵
    1. Rashed WM,
    2. Maher E,
    3. Adel M,
    4. Saber O and
    5. Zaghloul MS
    : Pediatric diffuse intrinsic pontine glioma: where do we stand? Cancer Metastasis Rev 38(4): 759-770, 2019. PMID: 31802357. DOI: 10.1007/s10555-019-09824-2
    OpenUrlCrossRefPubMed
  14. ↵
    1. Fangusaro J
    : Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol 2: 105, 2012. PMID: 22937526. DOI: 10.3389/fonc.2012.00105
    OpenUrlCrossRefPubMed
  15. ↵
    1. Mittelbronn M
    : The Current WHO Classification of tumours of the central nervous system: Histopathology and additional diagnostic methods. Current Medical Imaging Reviews 6(4): 200-219, 2015. DOI: 10.2174/157340510793205495
    OpenUrlCrossRef
  16. ↵
    1. Qaddoumi I,
    2. Sultan I and
    3. Gajjar A
    : Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the Surveillance, Epidemiology, and End Results database. Cancer 115(24): 5761-5770, 2009. PMID: 19813274. DOI: 10.1002/cncr.24663
    OpenUrlCrossRefPubMed
  17. ↵
    1. Rineer J,
    2. Schreiber D,
    3. Choi K and
    4. Rotman M
    : Characterization and outcomes of infratentorial malignant glioma: a populationbased study using the Surveillance Epidemiology and End-Results database. Radiother Oncol 95(3): 321-326, 2010. PMID: 20451276. DOI: 10.1016/j.radonc.2010.04.007
    OpenUrlCrossRefPubMed
  18. ↵
    1. Faury D,
    2. Nantel A,
    3. Dunn SE,
    4. Guiot MC,
    5. Haque T,
    6. Hauser P,
    7. Garami M,
    8. Bognár L,
    9. Hanzély Z,
    10. Liberski PP,
    11. Lopez-Aguilar E,
    12. Valera ET,
    13. Tone LG,
    14. Carret AS, Del
    15. Maestro RF,
    16. Gleave M,
    17. Montes JL,
    18. Pietsch T,
    19. Albrecht S and
    20. Jabado N
    : Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol 25(10): 1196-1208, 2007. PMID: 17401009. DOI: 10.1200/JCO.2006.07.8626
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Bax DA,
    2. Mackay A,
    3. Little SE,
    4. Carvalho D,
    5. Viana-Pereira M,
    6. Tamber N,
    7. Grigoriadis AE,
    8. Ashworth A,
    9. Reis RM,
    10. Ellison DW,
    11. Al-Sarraj S,
    12. Hargrave D and
    13. Jones C
    : A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res 16(13): 3368-3377, 2010. PMID: 20570930. DOI: 10.1158/1078-0432.CCR-10-0438
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Paugh BS,
    2. Qu C,
    3. Jones C,
    4. Liu Z,
    5. Adamowicz-Brice M,
    6. Zhang J,
    7. Bax DA,
    8. Coyle B,
    9. Barrow J,
    10. Hargrave D,
    11. Lowe J,
    12. Gajjar A,
    13. Zhao W,
    14. Broniscer A,
    15. Ellison DW,
    16. Grundy RG and
    17. Baker SJ
    : Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18): 3061-3068, 2010. PMID: 20479398. DOI: 10.1200/JCO.2009.26.7252
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. El-Ayadi M,
    2. Ansari M,
    3. Sturm D,
    4. Gielen GH,
    5. Warmuth-Metz M,
    6. Kramm CM and
    7. von Bueren AO
    : High-grade glioma in very young children: a rare and particular patient population. Oncotarget 8(38): 64564-64578, 2017. PMID: 28969094. DOI: 10.18632/oncotarget.18478
    OpenUrlCrossRefPubMed
  22. ↵
    1. Schwartzentruber J,
    2. Korshunov A,
    3. Liu XY,
    4. Jones DT,
    5. Pfaff E,
    6. Jacob K,
    7. Sturm D,
    8. Fontebasso AM,
    9. Quang DA,
    10. Tönjes M,
    11. Hovestadt V,
    12. Albrecht S,
    13. Kool M,
    14. Nantel A,
    15. Konermann C,
    16. Lindroth A,
    17. Jäger N,
    18. Rausch T,
    19. Ryzhova M,
    20. Korbel JO,
    21. Hielscher T,
    22. Hauser P,
    23. Garami M,
    24. Klekner A,
    25. Bognar L,
    26. Ebinger M,
    27. Schuhmann MU,
    28. Scheurlen W,
    29. Pekrun A,
    30. Frühwald MC,
    31. Roggendorf W,
    32. Kramm C,
    33. Dürken M,
    34. Atkinson J,
    35. Lepage P,
    36. Montpetit A,
    37. Zakrzewska M,
    38. Zakrzewski K,
    39. Liberski PP,
    40. Dong Z,
    41. Siegel P,
    42. Kulozik AE,
    43. Zapatka M,
    44. Guha A,
    45. Malkin D,
    46. Felsberg J,
    47. Reifenberger G,
    48. von Deimling A,
    49. Ichimura K,
    50. Collins VP,
    51. Witt H,
    52. Milde T,
    53. Witt O,
    54. Zhang C,
    55. Castelo-Branco P,
    56. Lichter P,
    57. Faury D,
    58. Tabori U,
    59. Plass C,
    60. Majewski J,
    61. Pfister SM and
    62. Jabado N
    : Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384): 226-231, 2012. PMID: 22286061. DOI: 10.1038/nature10833
    OpenUrlCrossRefPubMed
  23. ↵
    1. Wu G,
    2. Diaz AK,
    3. Paugh BS,
    4. Rankin SL,
    5. Ju B,
    6. Li Y,
    7. Zhu X,
    8. Qu C,
    9. Chen X,
    10. Zhang J,
    11. Easton J,
    12. Edmonson M,
    13. Ma X,
    14. Lu C,
    15. Nagahawatte P,
    16. Hedlund E,
    17. Rusch M,
    18. Pounds S,
    19. Lin T,
    20. Onar-Thomas A,
    21. Huether R,
    22. Kriwacki R,
    23. Parker M,
    24. Gupta P,
    25. Becksfort J,
    26. Wei L,
    27. Mulder HL,
    28. Boggs K,
    29. Vadodaria B,
    30. Yergeau D,
    31. Russell JC,
    32. Ochoa K,
    33. Fulton RS,
    34. Fulton LL,
    35. Jones C,
    36. Boop FA,
    37. Broniscer A,
    38. Wetmore C,
    39. Gajjar A,
    40. Ding L,
    41. Mardis ER,
    42. Wilson RK,
    43. Taylor MR,
    44. Downing JR,
    45. Ellison DW,
    46. Zhang J and
    47. Baker SJ
    : The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46(5): 444-450, 2014. PMID: 24705251. DOI: 10.1038/ng.2938
    OpenUrlCrossRefPubMed
  24. ↵
    1. Diaz AK and
    2. Baker SJ
    : The genetic signatures of pediatric highgrade glioma: no longer a one-act play. Semin Radiat Oncol 24(4): 240-247, 2014. PMID: 25219808. DOI: 10.1016/j.semradonc.2014.06.003
    OpenUrlCrossRefPubMed
  25. ↵
    1. Paugh BS,
    2. Broniscer A,
    3. Qu C,
    4. Miller CP,
    5. Zhang J,
    6. Tatevossian RG,
    7. Olson JM,
    8. Geyer JR,
    9. Chi SN,
    10. da Silva NS,
    11. Onar-Thomas A,
    12. Baker JN,
    13. Gajjar A,
    14. Ellison DW and
    15. Baker SJ
    : Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29(30): 3999-4006, 2011. PMID: 21931021. DOI: 10.1200/JCO.2011.35.5677
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Qu HQ,
    2. Jacob K,
    3. Fatet S,
    4. Ge B,
    5. Barnett D,
    6. Delattre O,
    7. Faury D,
    8. Montpetit A,
    9. Solomon L,
    10. Hauser P,
    11. Garami M,
    12. Bognar L,
    13. Hansely Z,
    14. Mio R,
    15. Farmer JP,
    16. Albrecht S,
    17. Polychronakos C,
    18. Hawkins C and
    19. Jabado N
    : Genome-wide profiling using singlenucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro Oncol 12(2): 153-163, 2010. PMID: 20150382. DOI: 10.1093/neuonc/nop001
    OpenUrlCrossRefPubMed
  27. ↵
    1. Barrow J,
    2. Adamowicz-Brice M,
    3. Cartmill M,
    4. MacArthur D,
    5. Lowe J,
    6. Robson K,
    7. Brundler MA,
    8. Walker DA,
    9. Coyle B and
    10. Grundy R
    : Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol 13(2): 212-222, 2011. PMID: 21138945. DOI: 10.1093/neuonc/noq158
    OpenUrlCrossRefPubMed
  28. ↵
    1. Zarghooni M,
    2. Bartels U,
    3. Lee E,
    4. Buczkowicz P,
    5. Morrison A,
    6. Huang A,
    7. Bouffet E and
    8. Hawkins C
    : Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28(8): 1337-1344, 2010. PMID: 20142589. DOI: 10.1200/JCO.2009.25.5463
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Lin F,
    2. de Gooijer MC,
    3. Hanekamp D,
    4. Brandsma D,
    5. Beijnen JH and
    6. van Tellingen O
    : Targeting core (mutated) pathways of high-grade gliomas: challenges of intrinsic resistance and drug efflux. CNS Oncol 2(3): 271-288, 2013. PMID: 25054467. DOI: 10.2217/cns.13.15
    OpenUrlCrossRefPubMed
  30. ↵
    1. Pollack IF,
    2. Hamilton RL,
    3. James CD,
    4. Finkelstein SD,
    5. Burnham J,
    6. Yates AJ,
    7. Holmes EJ,
    8. Zhou T,
    9. Finlay JL and Children’s Oncology Group
    : Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg 105(5 Suppl): 418-424, 2006. PMID: 17328268. DOI: 10.3171/ped.2006.105.5.418
    OpenUrlCrossRefPubMed
  31. ↵
    1. Sung T,
    2. Miller DC,
    3. Hayes RL,
    4. Alonso M,
    5. Yee H and
    6. Newcomb EW
    : Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 10(2): 249-259, 2000. PMID: 10764044. DOI: 10.1111/j.1750-3639.2000.tb00258.x
    OpenUrlCrossRefPubMed
  32. ↵
    1. Gilbertson RJ,
    2. Hill DA,
    3. Hernan R,
    4. Kocak M,
    5. Geyer R,
    6. Olson J,
    7. Gajjar A,
    8. Rush L,
    9. Hamilton RL,
    10. Finkelstein SD and
    11. Pollack IF
    : ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res 9(10 Pt 1): 3620-3624, 2003. PMID: 14506149.
    OpenUrlAbstract/FREE Full Text
    1. Li G,
    2. Mitra SS,
    3. Monje M,
    4. Henrich KN,
    5. Bangs CD,
    6. Nitta RT and
    7. Wong AJ
    : Expression of epidermal growth factor variant III (EGFRvIII) in pediatric diffuse intrinsic pontine gliomas. J Neurooncol 108(3): 395-402, 2012. PMID: 22382786. DOI: 10.1007/s11060-012-0842-3
    OpenUrlCrossRefPubMed
  33. ↵
    1. Bax DA,
    2. Gaspar N,
    3. Little SE,
    4. Marshall L,
    5. Perryman L,
    6. Regairaz M,
    7. Viana-Pereira M,
    8. Vuononvirta R,
    9. Sharp SY,
    10. Reis-Filho JS,
    11. Stávale JN,
    12. Al-Sarraj S,
    13. Reis RM,
    14. Vassal G,
    15. Pearson AD,
    16. Hargrave D,
    17. Ellison DW,
    18. Workman P and
    19. Jones C
    : EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin Cancer Res 15(18): 5753-5761, 2009. PMID: 19737945. DOI: 10.1158/1078-0432.CCR-08-3210
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Paugh BS,
    2. Zhu X,
    3. Qu C,
    4. Endersby R,
    5. Diaz AK,
    6. Zhang J,
    7. Bax DA,
    8. Carvalho D,
    9. Reis RM,
    10. Onar-Thomas A,
    11. Broniscer A,
    12. Wetmore C,
    13. Zhang J,
    14. Jones C,
    15. Ellison DW and
    16. Baker SJ
    : Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73(20): 6219-6229, 2013. PMID: 23970477. DOI: 10.1158/0008-5472.CAN-13-1491
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Liu KW,
    2. Feng H,
    3. Bachoo R,
    4. Kazlauskas A,
    5. Smith EM,
    6. Symes K,
    7. Hamilton RL,
    8. Nagane M,
    9. Nishikawa R,
    10. Hu B and
    11. Cheng SY
    : SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J Clin Invest 121(3): 905-917, 2011. PMID: 21393858. DOI: 10.1172/JCI43690
    OpenUrlCrossRefPubMed
  36. ↵
    1. Puget S,
    2. Philippe C,
    3. Bax DA,
    4. Job B,
    5. Varlet P,
    6. Junier MP,
    7. Andreiuolo F,
    8. Carvalho D,
    9. Reis R,
    10. Guerrini-Rousseau L,
    11. Roujeau T,
    12. Dessen P,
    13. Richon C,
    14. Lazar V,
    15. Le Teuff G,
    16. Sainte-Rose C,
    17. Geoerger B,
    18. Vassal G,
    19. Jones C and
    20. Grill J
    : Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One 7(2): e30313, 2012. PMID: 22389665. DOI: 10.1371/journal.pone.0030313
    OpenUrlCrossRefPubMed
  37. ↵
    1. Grill J,
    2. Puget S,
    3. Andreiuolo F,
    4. Philippe C,
    5. MacConaill L and
    6. Kieran MW
    : Critical oncogenic mutations in newly diagnosed pediatric diffuse intrinsic pontine glioma. Pediatr Blood Cancer 58(4): 489-491, 2012. PMID: 22190243. DOI: 10.1002/pbc.24060
    OpenUrlCrossRefPubMed
  38. ↵
    1. Jones C,
    2. Perryman L and
    3. Hargrave D
    : Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 9(7): 400-413, 2012. PMID: 22641364. DOI: 10.1038/nrclinonc.2012.87
    OpenUrlCrossRefPubMed
  39. ↵
    1. Coleman C,
    2. Stoller S,
    3. Grotzer M,
    4. Stucklin AG,
    5. Nazarian J and
    6. Mueller S
    : Pediatric hemispheric high-grade glioma: targeting the future. Cancer Metastasis Rev 39(1): 245-260, 2020. PMID: 31989507. DOI: 10.1007/s10555-020-09850-5
    OpenUrlCrossRefPubMed
  40. ↵
    1. Mueller T,
    2. Stucklin A,
    3. Postlmayr A,
    4. Metzger S,
    5. Gerber N,
    6. Kline C,
    7. Grotzer M,
    8. Nazarian J and
    9. Mueller S
    : Advances in targeted therapies for pediatric brain tumors. Current Treatment Options in Neurology 22(12): 43, 2021. DOI: 10.1007/s11940-020-00651-3
    OpenUrlCrossRef
  41. ↵
    1. Guerreiro Stucklin AS,
    2. Ryall S,
    3. Fukuoka K,
    4. Zapotocky M,
    5. Lassaletta A,
    6. Li C,
    7. Bridge T,
    8. Kim B,
    9. Arnoldo A,
    10. Kowalski PE,
    11. Zhong Y,
    12. Johnson M,
    13. Li C,
    14. Ramani AK,
    15. Siddaway R,
    16. Nobre LF,
    17. de Antonellis P,
    18. Dunham C,
    19. Cheng S,
    20. Boué DR,
    21. Finlay JL,
    22. Coven SL,
    23. de Prada I,
    24. Perez-Somarriba M,
    25. Faria CC,
    26. Grotzer MA,
    27. Rushing E,
    28. Sumerauer D,
    29. Zamecnik J,
    30. Krskova L,
    31. Garcia Ariza M,
    32. Cruz O,
    33. Morales La Madrid A,
    34. Solano P,
    35. Terashima K,
    36. Nakano Y,
    37. Ichimura K,
    38. Nagane M,
    39. Sakamoto H,
    40. Gil-da-Costa MJ,
    41. Silva R,
    42. Johnston DL,
    43. Michaud J,
    44. Wilson B,
    45. van Landeghem FKH,
    46. Oviedo A,
    47. McNeely PD,
    48. Crooks B,
    49. Fried I,
    50. Zhukova N,
    51. Hansford JR,
    52. Nageswararao A,
    53. Garzia L,
    54. Shago M,
    55. Brudno M,
    56. Irwin MS,
    57. Bartels U,
    58. Ramaswamy V,
    59. Bouffet E,
    60. Taylor MD,
    61. Tabori U and
    62. Hawkins C
    : Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10(1): 4343, 2019. PMID: 31554817. DOI: 10.1038/s41467-019-12187-5
    OpenUrlCrossRefPubMed
  42. ↵
    1. Cancer Genome Atlas Research Network
    : Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216): 1061-1068, 2008. PMID: 18772890. DOI: 10.1038/nature07385
    OpenUrlCrossRefPubMed
  43. ↵
    1. Stommel JM,
    2. Kimmelman AC,
    3. Ying H,
    4. Nabioullin R,
    5. Ponugoti AH,
    6. Wiedemeyer R,
    7. Stegh AH,
    8. Bradner JE,
    9. Ligon KL,
    10. Brennan C,
    11. Chin L and
    12. DePinho RA
    : Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318(5848): 287-290, 2007. PMID: 17872411. DOI: 10.1126/science.1142946
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Clarke M,
    2. Mackay A,
    3. Ismer B,
    4. Pickles JC,
    5. Tatevossian RG,
    6. Newman S,
    7. Bale TA,
    8. Stoler I,
    9. Izquierdo E,
    10. Temelso S,
    11. Carvalho DM,
    12. Molinari V,
    13. Burford A,
    14. Howell L,
    15. Virasami A,
    16. Fairchild AR,
    17. Avery A,
    18. Chalker J,
    19. Kristiansen M,
    20. Haupfear K,
    21. Dalton JD,
    22. Orisme W,
    23. Wen J,
    24. Hubank M,
    25. Kurian KM,
    26. Rowe C,
    27. Maybury M,
    28. Crosier S,
    29. Knipstein J,
    30. Schüller U,
    31. Kordes U,
    32. Kram DE,
    33. Snuderl M,
    34. Bridges L,
    35. Martin AJ,
    36. Doey LJ,
    37. Al-Sarraj S,
    38. Chandler C,
    39. Zebian B,
    40. Cairns C,
    41. Natrajan R,
    42. Boult JKR,
    43. Robinson SP,
    44. Sill M,
    45. Dunkel IJ,
    46. Gilheeney SW,
    47. Rosenblum MK,
    48. Hughes D,
    49. Proszek PZ,
    50. Macdonald TJ,
    51. Preusser M,
    52. Haberler C,
    53. Slavc I,
    54. Packer R,
    55. Ng HK,
    56. Caspi S,
    57. Popović M,
    58. Faganel Kotnik B,
    59. Wood MD,
    60. Baird L,
    61. Davare MA,
    62. Solomon DA,
    63. Olsen TK,
    64. Brandal P,
    65. Farrell M,
    66. Cryan JB,
    67. Capra M,
    68. Karremann M,
    69. Schittenhelm J,
    70. Schuhmann MU,
    71. Ebinger M,
    72. Dinjens WNM,
    73. Kerl K,
    74. Hettmer S,
    75. Pietsch T,
    76. Andreiuolo F,
    77. Driever PH,
    78. Korshunov A,
    79. Hiddingh L,
    80. Worst BC,
    81. Sturm D,
    82. Zuckermann M,
    83. Witt O,
    84. Bloom T,
    85. Mitchell C,
    86. Miele E,
    87. Colafati GS,
    88. Diomedi-Camassei F,
    89. Bailey S,
    90. Moore AS,
    91. Hassall TEG,
    92. Lowis SP,
    93. Tsoli M,
    94. Cowley MJ,
    95. Ziegler DS,
    96. Karajannis MA,
    97. Aquilina K,
    98. Hargrave DR,
    99. Carceller F,
    100. Marshall LV,
    101. von Deimling A,
    102. Kramm CM,
    103. Pfister SM,
    104. Sahm F,
    105. Baker SJ,
    106. Mastronuzzi A,
    107. Carai A,
    108. Vinci M,
    109. Capper D,
    110. Popov S,
    111. Ellison DW,
    112. Jacques TS,
    113. Jones DTW and
    114. Jones C
    : Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov 10(7): 942-963, 2020. PMID: 32238360. DOI: 10.1158/2159-8290.CD-19-1030
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Jones DT,
    2. Hutter B,
    3. Jäger N,
    4. Korshunov A,
    5. Kool M,
    6. Warnatz HJ,
    7. Zichner T,
    8. Lambert SR,
    9. Ryzhova M,
    10. Quang DA,
    11. Fontebasso AM,
    12. Stütz AM,
    13. Hutter S,
    14. Zuckermann M,
    15. Sturm D,
    16. Gronych J,
    17. Lasitschka B,
    18. Schmidt S,
    19. Seker-Cin H,
    20. Witt H,
    21. Sultan M,
    22. Ralser M,
    23. Northcott PA,
    24. Hovestadt V,
    25. Bender S,
    26. Pfaff E,
    27. Stark S,
    28. Faury D,
    29. Schwartzentruber J,
    30. Majewski J,
    31. Weber UD,
    32. Zapatka M,
    33. Raeder B,
    34. Schlesner M,
    35. Worth CL,
    36. Bartholomae CC,
    37. von Kalle C,
    38. Imbusch CD,
    39. Radomski S,
    40. Lawerenz C,
    41. van Sluis P,
    42. Koster J,
    43. Volckmann R,
    44. Versteeg R,
    45. Lehrach H,
    46. Monoranu C,
    47. Winkler B,
    48. Unterberg A,
    49. Herold-Mende C,
    50. Milde T,
    51. Kulozik AE,
    52. Ebinger M,
    53. Schuhmann MU,
    54. Cho YJ,
    55. Pomeroy SL,
    56. von Deimling A,
    57. Witt O,
    58. Taylor MD,
    59. Wolf S,
    60. Karajannis MA,
    61. Eberhart CG,
    62. Scheurlen W,
    63. Hasselblatt M,
    64. Ligon KL,
    65. Kieran MW,
    66. Korbel JO,
    67. Yaspo ML,
    68. Brors B,
    69. Felsberg J,
    70. Reifenberger G,
    71. Collins VP,
    72. Jabado N,
    73. Eils R,
    74. Lichter P,
    75. Pfister SM and International Cancer Genome Consortium PedBrain Tumor Project
    : Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45(8): 927-932, 2013. PMID: 23817572. DOI: 10.1038/ng.2682
    OpenUrlCrossRefPubMed
    1. Frattini V,
    2. Trifonov V,
    3. Chan JM,
    4. Castano A,
    5. Lia M,
    6. Abate F,
    7. Keir ST,
    8. Ji AX,
    9. Zoppoli P,
    10. Niola F,
    11. Danussi C,
    12. Dolgalev I,
    13. Porrati P,
    14. Pellegatta S,
    15. Heguy A,
    16. Gupta G,
    17. Pisapia DJ,
    18. Canoll P,
    19. Bruce JN,
    20. McLendon RE,
    21. Yan H,
    22. Aldape K,
    23. Finocchiaro G,
    24. Mikkelsen T,
    25. Privé GG,
    26. Bigner DD,
    27. Lasorella A,
    28. Rabadan R and
    29. Iavarone A
    : The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45(10): 1141-1149, 2013. PMID: 23917401. DOI: 10.1038/ng.2734
    OpenUrlCrossRefPubMed
  46. ↵
    1. Zhang J,
    2. Wu G,
    3. Miller CP,
    4. Tatevossian RG,
    5. Dalton JD,
    6. Tang B,
    7. Orisme W,
    8. Punchihewa C,
    9. Parker M,
    10. Qaddoumi I,
    11. Boop FA,
    12. Lu C,
    13. Kandoth C,
    14. Ding L,
    15. Lee R,
    16. Huether R,
    17. Chen X,
    18. Hedlund E,
    19. Nagahawatte P,
    20. Rusch M,
    21. Boggs K,
    22. Cheng J,
    23. Becksfort J,
    24. Ma J,
    25. Song G,
    26. Li Y,
    27. Wei L,
    28. Wang J,
    29. Shurtleff S,
    30. Easton J,
    31. Zhao D,
    32. Fulton RS,
    33. Fulton LL,
    34. Dooling DJ,
    35. Vadodaria B,
    36. Mulder HL,
    37. Tang C,
    38. Ochoa K,
    39. Mullighan CG,
    40. Gajjar A,
    41. Kriwacki R,
    42. Sheer D,
    43. Gilbertson RJ,
    44. Mardis ER,
    45. Wilson RK,
    46. Downing JR,
    47. Baker SJ,
    48. Ellison DW and St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project
    : Wholegenome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6): 602-612, 2013. PMID: 23583981. DOI: 10.1038/ng.2611
    OpenUrlCrossRefPubMed
  47. ↵
    1. Duffner PK,
    2. Krischer JP,
    3. Burger PC,
    4. Cohen ME,
    5. Backstrom JW,
    6. Horowitz ME,
    7. Sanford RA,
    8. Friedman HS and
    9. Kun LE
    : Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J Neurooncol 28(2-3): 245-256, 1996. PMID: 8832466. DOI: 10.1007/BF00250203
    OpenUrlCrossRefPubMed
  48. ↵
    1. Nicolaides TP,
    2. Li H,
    3. Solomon DA,
    4. Hariono S,
    5. Hashizume R,
    6. Barkovich K,
    7. Baker SJ,
    8. Paugh BS,
    9. Jones C,
    10. Forshew T,
    11. Hindley GF,
    12. Hodgson JG,
    13. Kim JS,
    14. Rowitch DH,
    15. Weiss WA,
    16. Waldman TA and
    17. James CD
    : Targeted therapy for BRAFV600E malignant astrocytoma. Clin Cancer Res 17(24): 7595-7604, 2011. PMID: 22038996. DOI: 10.1158/1078-0432.CCR-11-1456
    OpenUrlAbstract/FREE Full Text
  49. ↵
    1. Toll SA,
    2. Tran HN,
    3. Cotter J,
    4. Judkins AR,
    5. Tamrazi B,
    6. Biegel JA,
    7. Dhall G,
    8. Robison NJ,
    9. Waters K,
    10. Patel P,
    11. Cooper R and
    12. Margol AS
    : Sustained response of three pediatric BRAFV600E mutated high-grade gliomas to combined BRAF and MEK inhibitor therapy. Oncotarget 10(4): 551-557, 2019. PMID: 30728904. DOI: 10.18632/oncotarget.26560
    OpenUrlCrossRefPubMed
  50. ↵
    1. Lassaletta A,
    2. Zapotocky M,
    3. Mistry M,
    4. Ramaswamy V,
    5. Honnorat M,
    6. Krishnatry R,
    7. Guerreiro Stucklin A,
    8. Zhukova N,
    9. Arnoldo A,
    10. Ryall S,
    11. Ling C,
    12. McKeown T,
    13. Loukides J,
    14. Cruz O,
    15. de Torres C,
    16. Ho CY,
    17. Packer RJ,
    18. Tatevossian R,
    19. Qaddoumi I,
    20. Harreld JH,
    21. Dalton JD,
    22. Mulcahy-Levy J,
    23. Foreman N,
    24. Karajannis MA,
    25. Wang S,
    26. Snuderl M,
    27. Nageswara Rao A,
    28. Giannini C,
    29. Kieran M,
    30. Ligon KL,
    31. Garre ML,
    32. Nozza P,
    33. Mascelli S,
    34. Raso A,
    35. Mueller S,
    36. Nicolaides T,
    37. Silva K,
    38. Perbet R,
    39. Vasiljevic A,
    40. Faure Conter C,
    41. Frappaz D,
    42. Leary S,
    43. Crane C,
    44. Chan A,
    45. Ng HK,
    46. Shi ZF,
    47. Mao Y,
    48. Finch E,
    49. Eisenstat D,
    50. Wilson B,
    51. Carret AS,
    52. Hauser P,
    53. Sumerauer D,
    54. Krskova L,
    55. Larouche V,
    56. Fleming A,
    57. Zelcer S,
    58. Jabado N,
    59. Rutka JT,
    60. Dirks P,
    61. Taylor MD,
    62. Chen S,
    63. Bartels U,
    64. Huang A,
    65. Ellison DW,
    66. Bouffet E,
    67. Hawkins C and
    68. Tabori U
    : Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35(25): 2934-2941, 2017. PMID: 28727518. DOI: 10.1200/JCO.2016.71.8726
    OpenUrlCrossRefPubMed
  51. ↵
    1. Barton KL,
    2. Misuraca K,
    3. Cordero F,
    4. Dobrikova E,
    5. Min HD,
    6. Gromeier M,
    7. Kirsch DG and
    8. Becher OJ
    : PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS One 8(10): e77639, 2013. PMID: 24098593. DOI: 10.1371/journal.pone.0077639
    OpenUrlCrossRefPubMed
  52. ↵
    1. Schiffman JD,
    2. Hodgson JG,
    3. VandenBerg SR,
    4. Flaherty P,
    5. Polley MY,
    6. Yu M,
    7. Fisher PG,
    8. Rowitch DH,
    9. Ford JM,
    10. Berger MS,
    11. Ji H,
    12. Gutmann DH and
    13. James CD
    : Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2): 512-519, 2010. PMID: 20068183. DOI: 10.1158/0008-5472.CAN-09-1851
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Mistry M,
    2. Zhukova N,
    3. Merico D,
    4. Rakopoulos P,
    5. Krishnatry R,
    6. Shago M,
    7. Stavropoulos J,
    8. Alon N,
    9. Pole JD,
    10. Ray PN,
    11. Navickiene V,
    12. Mangerel J,
    13. Remke M,
    14. Buczkowicz P,
    15. Ramaswamy V,
    16. Guerreiro Stucklin A,
    17. Li M,
    18. Young EJ,
    19. Zhang C,
    20. Castelo-Branco P,
    21. Bakry D,
    22. Laughlin S,
    23. Shlien A,
    24. Chan J,
    25. Ligon KL,
    26. Rutka JT,
    27. Dirks PB,
    28. Taylor MD,
    29. Greenberg M,
    30. Malkin D,
    31. Huang A,
    32. Bouffet E,
    33. Hawkins CE and
    34. Tabori U
    : BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33(9): 1015-1022, 2015. PMID: 25667294. DOI: 10.1200/JCO.2014.58.3922
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Mackay A,
    2. Burford A,
    3. Carvalho D,
    4. Izquierdo E,
    5. Fazal-Salom J,
    6. Taylor KR,
    7. Bjerke L,
    8. Clarke M,
    9. Vinci M,
    10. Nandhabalan M,
    11. Temelso S,
    12. Popov S,
    13. Molinari V,
    14. Raman P,
    15. Waanders AJ,
    16. Han HJ,
    17. Gupta S,
    18. Marshall L,
    19. Zacharoulis S,
    20. Vaidya S,
    21. Mandeville HC,
    22. Bridges LR,
    23. Martin AJ,
    24. Al-Sarraj S,
    25. Chandler C,
    26. Ng HK,
    27. Li X,
    28. Mu K,
    29. Trabelsi S,
    30. Brahim DH,
    31. Kisljakov AN,
    32. Konovalov DM,
    33. Moore AS,
    34. Carcaboso AM,
    35. Sunol M,
    36. de Torres C,
    37. Cruz O,
    38. Mora J,
    39. Shats LI,
    40. Stavale JN,
    41. Bidinotto LT,
    42. Reis RM,
    43. Entz-Werle N,
    44. Farrell M,
    45. Cryan J,
    46. Crimmins D,
    47. Caird J,
    48. Pears J,
    49. Monje M,
    50. Debily MA,
    51. Castel D,
    52. Grill J,
    53. Hawkins C,
    54. Nikbakht H,
    55. Jabado N,
    56. Baker SJ,
    57. Pfister SM,
    58. Jones DTW,
    59. Fouladi M,
    60. von Bueren AO,
    61. Baudis M,
    62. Resnick A and
    63. Jones C
    : Integrated molecular metaanalysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4): 520-537.e5, 2017. PMID: 28966033. DOI: 10.1016/j.ccell.2017.08.017
    OpenUrlCrossRefPubMed
  55. ↵
    1. Parsons DW,
    2. Jones S,
    3. Zhang X,
    4. Lin JC,
    5. Leary RJ,
    6. Angenendt P,
    7. Mankoo P,
    8. Carter H,
    9. Siu IM,
    10. Gallia GL,
    11. Olivi A,
    12. McLendon R,
    13. Rasheed BA,
    14. Keir S,
    15. Nikolskaya T,
    16. Nikolsky Y,
    17. Busam DA,
    18. Tekleab H,
    19. Diaz LA Jr.,
    20. Hartigan J,
    21. Smith DR,
    22. Strausberg RL,
    23. Marie SK,
    24. Shinjo SM,
    25. Yan H,
    26. Riggins GJ,
    27. Bigner DD,
    28. Karchin R,
    29. Papadopoulos N,
    30. Parmigiani G,
    31. Vogelstein B,
    32. Velculescu VE and
    33. Kinzler KW
    : An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897): 1807-1812, 2008. PMID: 18772396. DOI: 10.1126/science.1164382
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Brennan CW,
    2. Verhaak RG,
    3. McKenna A,
    4. Campos B,
    5. Noushmehr H,
    6. Salama SR,
    7. Zheng S,
    8. Chakravarty D,
    9. Sanborn JZ,
    10. Berman SH,
    11. Beroukhim R,
    12. Bernard B,
    13. Wu CJ,
    14. Genovese G,
    15. Shmulevich I,
    16. Barnholtz-Sloan J,
    17. Zou L,
    18. Vegesna R,
    19. Shukla SA,
    20. Ciriello G,
    21. Yung WK,
    22. Zhang W,
    23. Sougnez C,
    24. Mikkelsen T,
    25. Aldape K,
    26. Bigner DD,
    27. van Meir EG,
    28. Prados M,
    29. Sloan A,
    30. Black KL,
    31. Eschbacher J,
    32. Finocchiaro G,
    33. Friedman W,
    34. Andrews DW,
    35. Guha A,
    36. Iacocca M,
    37. O’Neill BP,
    38. Foltz G,
    39. Myers J,
    40. Weisenberger DJ,
    41. Penny R,
    42. Kucherlapati R,
    43. Perou CM,
    44. Hayes DN,
    45. Gibbs R,
    46. Marra M,
    47. Mills GB,
    48. Lander E,
    49. Spellman P,
    50. Wilson R,
    51. Sander C,
    52. Weinstein J,
    53. Meyerson M,
    54. Gabriel S,
    55. Laird PW,
    56. Haussler D,
    57. Getz G,
    58. Chin L and TCGA Research Network
    : The somatic genomic landscape of glioblastoma. Cell 155(2): 462-477, 2013. PMID: 24120142. DOI: 10.1016/j.cell.2013.09.034
    OpenUrlCrossRefPubMed
    1. Gallia GL,
    2. Rand V,
    3. Siu IM,
    4. Eberhart CG,
    5. James CD,
    6. Marie SK,
    7. Oba-Shinjo SM,
    8. Carlotti CG,
    9. Caballero OL,
    10. Simpson AJ,
    11. Brock MV,
    12. Massion PP,
    13. Carson BS Sr. and
    14. Riggins GJ
    : PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res 4(10): 709-714, 2006. PMID: 17050665. DOI: 10.1158/1541-7786.MCR-06-0172
    OpenUrlAbstract/FREE Full Text
    1. Broderick DK,
    2. Di C,
    3. Parrett TJ,
    4. Samuels YR,
    5. Cummins JM,
    6. McLendon RE,
    7. Fults DW,
    8. Velculescu VE,
    9. Bigner DD and
    10. Yan H
    : Mutations of PIK3CA in anaplastic oligodendrogliomas, highgrade astrocytomas, and medulloblastomas. Cancer Res 64(15): 5048-5050, 2004. PMID: 15289301. DOI: 10.1158/0008-5472.CAN-04-1170
    OpenUrlAbstract/FREE Full Text
    1. Samuels Y,
    2. Wang Z,
    3. Bardelli A,
    4. Silliman N,
    5. Ptak J,
    6. Szabo S,
    7. Yan H,
    8. Gazdar A,
    9. Powell SM,
    10. Riggins GJ,
    11. Willson JK,
    12. Markowitz S,
    13. Kinzler KW,
    14. Vogelstein B and
    15. Velculescu VE
    : High frequency of mutations of the PIK3CA gene in human cancers. Science 304(5670): 554, 2004. PMID: 15016963. DOI: 10.1126/science.1096502
    OpenUrlFREE Full Text
    1. Hartmann C,
    2. Bartels G,
    3. Gehlhaar C,
    4. Holtkamp N and
    5. von Deimling A
    : PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol 109(6): 639-642, 2005. PMID: 15924253. DOI: 10.1007/s00401-005-1000-1
    OpenUrlCrossRefPubMed
  57. ↵
    1. Buczkowicz P,
    2. Hoeman C,
    3. Rakopoulos P,
    4. Pajovic S,
    5. Letourneau L,
    6. Dzamba M,
    7. Morrison A,
    8. Lewis P,
    9. Bouffet E,
    10. Bartels U,
    11. Zuccaro J,
    12. Agnihotri S,
    13. Ryall S,
    14. Barszczyk M,
    15. Chornenkyy Y,
    16. Bourgey M,
    17. Bourque G,
    18. Montpetit A,
    19. Cordero F,
    20. Castelo-Branco P,
    21. Mangerel J,
    22. Tabori U,
    23. Ho KC,
    24. Huang A,
    25. Taylor KR,
    26. Mackay A,
    27. Bendel AE,
    28. Nazarian J,
    29. Fangusaro JR,
    30. Karajannis MA,
    31. Zagzag D,
    32. Foreman NK,
    33. Donson A,
    34. Hegert JV,
    35. Smith A,
    36. Chan J,
    37. Lafay-Cousin L,
    38. Dunn S,
    39. Hukin J,
    40. Dunham C,
    41. Scheinemann K,
    42. Michaud J,
    43. Zelcer S,
    44. Ramsay D,
    45. Cain J,
    46. Brennan C,
    47. Souweidane MM,
    48. Jones C,
    49. Allis CD,
    50. Brudno M,
    51. Becher O and
    52. Hawkins C
    : Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46(5): 451-456, 2014. PMID: 24705254. DOI: 10.1038/ng.2936
    OpenUrlCrossRefPubMed
  58. ↵
    1. Kraus JA,
    2. Felsberg J,
    3. Tonn JC,
    4. Reifenberger G and
    5. Pietsch T
    : Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol 28(4): 325-333, 2002. PMID: 12175345. DOI: 10.1046/j.1365-2990.2002.00413.x
    OpenUrlCrossRefPubMed
    1. Cheng Y,
    2. Ng HK,
    3. Zhang SF,
    4. Ding M,
    5. Pang JC,
    6. Zheng J and
    7. Poon WS
    : Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30(11): 1284-1290, 1999. PMID: 10571506. DOI: 10.1016/s0046-8177(99)90057-6
    OpenUrlCrossRefPubMed
  59. ↵
    1. Raffel C,
    2. Frederick L,
    3. O’Fallon JR,
    4. Atherton-Skaff P,
    5. Perry A,
    6. Jenkins RB and
    7. James CD
    : Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res 5(12): 4085-4090, 1999. PMID: 10632344.
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Sherr CJ and
    2. McCormick F
    : The RB and p53 pathways in cancer. Cancer Cell 2(2): 103-112, 2002. PMID: 12204530. DOI: 10.1016/s1535-6108(02)00102-2
    OpenUrlCrossRefPubMed
  61. ↵
    1. Warren KE
    : Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2 : 205, 2012. PMID: 23293772. DOI: 10.3389/fonc.2012.00205
    OpenUrlCrossRefPubMed
  62. ↵
    1. Sturm D,
    2. Bender S,
    3. Jones DT,
    4. Lichter P,
    5. Grill J,
    6. Becher O,
    7. Hawkins C,
    8. Majewski J,
    9. Jones C,
    10. Costello JF,
    11. Iavarone A,
    12. Aldape K,
    13. Brennan CW,
    14. Jabado N and
    15. Pfister SM
    : Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 14(2): 92-107, 2014. PMID: 24457416. DOI: 10.1038/nrc3655
    OpenUrlCrossRefPubMed
  63. ↵
    1. Pollack IF,
    2. Finkelstein SD,
    3. Woods J,
    4. Burnham J,
    5. Holmes EJ,
    6. Hamilton RL,
    7. Yates AJ,
    8. Boyett JM,
    9. Finlay JL,
    10. Sposto R and Children’s Cancer Group
    : Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 346(6): 420-427, 2002. PMID: 11832530. DOI: 10.1056/NEJMoa012224
    OpenUrlCrossRefPubMed
  64. ↵
    1. Wu G,
    2. Broniscer A,
    3. McEachron TA,
    4. Lu C,
    5. Paugh BS,
    6. Becksfort J,
    7. Qu C,
    8. Ding L,
    9. Huether R,
    10. Parker M,
    11. Zhang J,
    12. Gajjar A,
    13. Dyer MA,
    14. Mullighan CG,
    15. Gilbertson RJ,
    16. Mardis ER,
    17. Wilson RK,
    18. Downing JR,
    19. Ellison DW,
    20. Zhang J,
    21. Baker SJ and St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project
    : Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3): 251-253, 2012. PMID: 22286216. DOI: 10.1038/ng.1102
    OpenUrlCrossRefPubMed
  65. ↵
    1. Fontebasso AM,
    2. Papillon-Cavanagh S,
    3. Schwartzentruber J,
    4. Nikbakht H,
    5. Gerges N,
    6. Fiset PO,
    7. Bechet D,
    8. Faury D,
    9. de Jay N,
    10. Ramkissoon LA,
    11. Corcoran A,
    12. Jones DT,
    13. Sturm D,
    14. Johann P,
    15. Tomita T,
    16. Goldman S,
    17. Nagib M,
    18. Bendel A,
    19. Goumnerova L,
    20. Bowers DC,
    21. Leonard JR,
    22. Rubin JB,
    23. Alden T,
    24. Browd S,
    25. Geyer JR,
    26. Leary S,
    27. Jallo G,
    28. Cohen K,
    29. Gupta N,
    30. Prados MD,
    31. Carret AS,
    32. Ellezam B,
    33. Crevier L,
    34. Klekner A,
    35. Bognar L,
    36. Hauser P,
    37. Garami M,
    38. Myseros J,
    39. Dong Z,
    40. Siegel PM,
    41. Malkin H,
    42. Ligon AH,
    43. Albrecht S,
    44. Pfister SM,
    45. Ligon KL,
    46. Majewski J,
    47. Jabado N and
    48. Kieran MW
    : Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46(5): 462-466, 2014. PMID: 24705250. DOI: 10.1038/ng.2950
    OpenUrlCrossRefPubMed
  66. ↵
    1. Jones C,
    2. Karajannis MA,
    3. Jones DTW,
    4. Kieran MW,
    5. Monje M,
    6. Baker SJ,
    7. Becher OJ,
    8. Cho YJ,
    9. Gupta N,
    10. Hawkins C,
    11. Hargrave D,
    12. Haas-Kogan DA,
    13. Jabado N,
    14. Li XN,
    15. Mueller S,
    16. Nicolaides T,
    17. Packer RJ,
    18. Persson AI,
    19. Phillips JJ,
    20. Simonds EF,
    21. Stafford JM,
    22. Tang Y,
    23. Pfister SM and
    24. Weiss WA
    : Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 19(2): 153-161, 2017. PMID: 27282398. DOI: 10.1093/neuonc/now101
    OpenUrlCrossRefPubMed
  67. ↵
    1. Sturm D,
    2. Witt H,
    3. Hovestadt V,
    4. Khuong-Quang DA,
    5. Jones DT,
    6. Konermann C,
    7. Pfaff E,
    8. Tönjes M,
    9. Sill M,
    10. Bender S,
    11. Kool M,
    12. Zapatka M,
    13. Becker N,
    14. Zucknick M,
    15. Hielscher T,
    16. Liu XY,
    17. Fontebasso AM,
    18. Ryzhova M,
    19. Albrecht S,
    20. Jacob K,
    21. Wolter M,
    22. Ebinger M,
    23. Schuhmann MU,
    24. van Meter T,
    25. Frühwald MC,
    26. Hauch H,
    27. Pekrun A,
    28. Radlwimmer B,
    29. Niehues T,
    30. von Komorowski G,
    31. Dürken M,
    32. Kulozik AE,
    33. Madden J,
    34. Donson A,
    35. Foreman NK,
    36. Drissi R,
    37. Fouladi M,
    38. Scheurlen W,
    39. von Deimling A,
    40. Monoranu C,
    41. Roggendorf W,
    42. Herold-Mende C,
    43. Unterberg A,
    44. Kramm CM,
    45. Felsberg J,
    46. Hartmann C,
    47. Wiestler B,
    48. Wick W,
    49. Milde T,
    50. Witt O,
    51. Lindroth AM,
    52. Schwartzentruber J,
    53. Faury D,
    54. Fleming A,
    55. Zakrzewska M,
    56. Liberski PP,
    57. Zakrzewski K,
    58. Hauser P,
    59. Garami M,
    60. Klekner A,
    61. Bognar L,
    62. Morrissy S,
    63. Cavalli F,
    64. Taylor MD,
    65. van Sluis P,
    66. Koster J,
    67. Versteeg R,
    68. Volckmann R,
    69. Mikkelsen T,
    70. Aldape K,
    71. Reifenberger G,
    72. Collins VP,
    73. Majewski J,
    74. Korshunov A,
    75. Lichter P,
    76. Plass C,
    77. Jabado N and
    78. Pfister SM
    : Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4): 425-437, 2012. PMID: 23079654. DOI: 10.1016/j.ccr.2012.08.024
    OpenUrlCrossRefPubMed
  68. ↵
    1. Khuong-Quang DA,
    2. Buczkowicz P,
    3. Rakopoulos P,
    4. Liu XY,
    5. Fontebasso AM,
    6. Bouffet E,
    7. Bartels U,
    8. Albrecht S,
    9. Schwartzentruber J,
    10. Letourneau L,
    11. Bourgey M,
    12. Bourque G,
    13. Montpetit A,
    14. Bourret G,
    15. Lepage P,
    16. Fleming A,
    17. Lichter P,
    18. Kool M,
    19. von Deimling A,
    20. Sturm D,
    21. Korshunov A,
    22. Faury D,
    23. Jones DT,
    24. Majewski J,
    25. Pfister SM,
    26. Jabado N and
    27. Hawkins C
    : K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3): 439-447, 2012. PMID: 22661320. DOI: 10.1007/s00401-012-0998-0
    OpenUrlCrossRefPubMed
  69. ↵
    1. Bjerke L,
    2. Mackay A,
    3. Nandhabalan M,
    4. Burford A,
    5. Jury A,
    6. Popov S,
    7. Bax DA,
    8. Carvalho D,
    9. Taylor KR,
    10. Vinci M,
    11. Bajrami I,
    12. McGonnell IM,
    13. Lord CJ,
    14. Reis RM,
    15. Hargrave D,
    16. Ashworth A,
    17. Workman P and
    18. Jones C
    : Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3(5): 512-519, 2013. PMID: 23539269. DOI: 10.1158/2159-8290.CD-12-0426
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Korshunov A,
    2. Ryzhova M,
    3. Hovestadt V,
    4. Bender S,
    5. Sturm D,
    6. Capper D,
    7. Meyer J,
    8. Schrimpf D,
    9. Kool M,
    10. Northcott PA,
    11. Zheludkova O,
    12. Milde T,
    13. Witt O,
    14. Kulozik AE,
    15. Reifenberger G,
    16. Jabado N,
    17. Perry A,
    18. Lichter P,
    19. von Deimling A,
    20. Pfister SM and
    21. Jones DT
    : Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5): 669-678, 2015. PMID: 25752754. DOI: 10.1007/s00401-015-1405-4
    OpenUrlCrossRefPubMed
  71. ↵
    1. Bender S,
    2. Tang Y,
    3. Lindroth AM,
    4. Hovestadt V,
    5. Jones DT,
    6. Kool M,
    7. Zapatka M,
    8. Northcott PA,
    9. Sturm D,
    10. Wang W,
    11. Radlwimmer B,
    12. Højfeldt JW,
    13. Truffaux N,
    14. Castel D,
    15. Schubert S,
    16. Ryzhova M,
    17. Seker-Cin H,
    18. Gronych J,
    19. Johann PD,
    20. Stark S,
    21. Meyer J,
    22. Milde T,
    23. Schuhmann M,
    24. Ebinger M,
    25. Monoranu CM,
    26. Ponnuswami A,
    27. Chen S,
    28. Jones C,
    29. Witt O,
    30. Collins VP,
    31. von Deimling A,
    32. Jabado N,
    33. Puget S,
    34. Grill J,
    35. Helin K,
    36. Korshunov A,
    37. Lichter P,
    38. Monje M,
    39. Plass C,
    40. Cho YJ and
    41. Pfister SM
    : Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24(5): 660-672, 2013. PMID: 24183680. DOI: 10.1016/j.ccr.2013.10.006
    OpenUrlCrossRefPubMed
  72. ↵
    1. Maury E and
    2. Hashizume R
    : Epigenetic modification in chromatin machinery and its deregulation in pediatric brain tumors: Insight into epigenetic therapies. Epigenetics 12(5): 353-369, 2017. PMID: 28059591. DOI: 10.1080/15592294.2016.1278095
    OpenUrlCrossRefPubMed
  73. ↵
    1. Lu VM,
    2. Alvi MA,
    3. McDonald KL and
    4. Daniels DJ
    : Impact of the H3K27M mutation on survival in pediatric high-grade glioma: a systematic review and meta-analysis. J Neurosurg Pediatr 23(3): 308-316, 2018. PMID: 30544362. DOI: 10.3171/2018.9.PEDS18419
    OpenUrlCrossRefPubMed
  74. ↵
    1. Bailey CP,
    2. Figueroa M,
    3. Gangadharan A,
    4. Yang Y,
    5. Romero MM,
    6. Kennis BA,
    7. Yadavilli S,
    8. Henry V,
    9. Collier T,
    10. Monje M,
    11. Lee DA,
    12. Wang L,
    13. Nazarian J,
    14. Gopalakrishnan V,
    15. Zaky W,
    16. Becher OJ and
    17. Chandra J
    : Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro Oncol 22(9): 1302-1314, 2020. PMID: 32166329. DOI: 10.1093/neuonc/noaa058
    OpenUrlCrossRefPubMed
  75. ↵
    1. Wagner EJ and
    2. Carpenter PB
    : Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2): 115-126, 2012. PMID: 22266761. DOI: 10.1038/nrm3274
    OpenUrlCrossRefPubMed
  76. ↵
    1. Fontebasso AM,
    2. Schwartzentruber J,
    3. Khuong-Quang DA,
    4. Liu XY,
    5. Sturm D,
    6. Korshunov A,
    7. Jones DT,
    8. Witt H,
    9. Kool M,
    10. Albrecht S,
    11. Fleming A,
    12. Hadjadj D,
    13. Busche S,
    14. Lepage P,
    15. Montpetit A,
    16. Staffa A,
    17. Gerges N,
    18. Zakrzewska M,
    19. Zakrzewski K,
    20. Liberski PP,
    21. Hauser P,
    22. Garami M,
    23. Klekner A,
    24. Bognar L,
    25. Zadeh G,
    26. Faury D,
    27. Pfister SM,
    28. Jabado N and
    29. Majewski J
    : Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric highgrade gliomas. Acta Neuropathol 125(5): 659-669, 2013. PMID: 23417712. DOI: 10.1007/s00401-013-1095-8
    OpenUrlCrossRefPubMed
  77. ↵
    1. Li F,
    2. Mao G,
    3. Tong D,
    4. Huang J,
    5. Gu L,
    6. Yang W and
    7. Li GM
    : The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153(3): 590-600, 2013. PMID: 23622243. DOI: 10.1016/j.cell.2013.03.025
    OpenUrlCrossRefPubMed
  78. ↵
    1. Uthamacumaran A and
    2. Craig M
    : Algorithmic reconstruction of glioblastoma network complexity. iScience 25(5): 104179, 2022. PMID: 35479408. DOI: 10.1016/j.isci.2022.104179
    OpenUrlCrossRefPubMed
  79. ↵
    1. Wang J,
    2. Huang TY,
    3. Hou Y,
    4. Bartom E,
    5. Lu X,
    6. Shilatifard A,
    7. Yue F and
    8. Saratsis A
    : Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Sci Adv 7(23): eabg4126, 2021. PMID: 34078608. DOI: 10.1126/sciadv.abg4126
    OpenUrlFREE Full Text
  80. ↵
    1. Filbin MG,
    2. Tirosh I,
    3. Hovestadt V,
    4. Shaw ML,
    5. Escalante LE,
    6. Mathewson ND,
    7. Neftel C,
    8. Frank N,
    9. Pelton K,
    10. Hebert CM,
    11. Haberler C,
    12. Yizhak K,
    13. Gojo J,
    14. Egervari K,
    15. Mount C,
    16. Van Galen P,
    17. Bonal DM,
    18. Nguyen QD,
    19. Beck A,
    20. Sinai C,
    21. Czech T,
    22. Dorfer C,
    23. Goumnerova L,
    24. Lavarino C,
    25. Carcaboso AM,
    26. Mora J,
    27. Mylvaganam R,
    28. Luo CC,
    29. Peyrl A,
    30. Popović M,
    31. Azizi A,
    32. Batchelor TT,
    33. Frosch MP,
    34. Martinez-Lage M,
    35. Kieran MW,
    36. Bandopadhayay P,
    37. Beroukhim R,
    38. Fritsch G,
    39. Getz G,
    40. Rozenblatt-Rosen O,
    41. Wucherpfennig KW,
    42. Louis DN,
    43. Monje M,
    44. Slavc I,
    45. Ligon KL,
    46. Golub TR,
    47. Regev A,
    48. Bernstein BE and
    49. Suvà ML
    : Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360(6386): 331-335, 2018. PMID: 29674595. DOI: 10.1126/science.aao4750
    OpenUrlAbstract/FREE Full Text
  81. ↵
    1. Lewis PW,
    2. Elsaesser SJ,
    3. Noh KM,
    4. Stadler SC and
    5. Allis CD
    : Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107(32): 14075-14080, 2010. PMID: 20651253. DOI: 10.1073/pnas.1008850107
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Tang J,
    2. Wu S,
    3. Liu H,
    4. Stratt R,
    5. Barak OG,
    6. Shiekhattar R,
    7. Picketts DJ and
    8. Yang X
    : A novel transcription regulatory complex containing death domain-associated protein and the ATR-X syndrome protein. J Biol Chem 279(19): 20369-20377, 2004. PMID: 14990586. DOI: 10.1074/jbc.M401321200
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Elsaesser SJ,
    2. Goldberg AD and
    3. Allis CD
    : New functions for an old variant: no substitute for histone H3.3. Curr Opin Genet Dev 20(2): 110-117, 2010. PMID: 20153629. DOI: 10.1016/j.gde.2010.01.003
    OpenUrlCrossRefPubMed
  84. ↵
    1. Heaphy CM,
    2. de Wilde RF,
    3. Jiao Y,
    4. Klein AP,
    5. Edil BH,
    6. Shi C,
    7. Bettegowda C,
    8. Rodriguez FJ,
    9. Eberhart CG,
    10. Hebbar S,
    11. Offerhaus GJ,
    12. McLendon R,
    13. Rasheed BA,
    14. He Y,
    15. Yan H,
    16. Bigner DD,
    17. Oba-Shinjo SM,
    18. Marie SK,
    19. Riggins GJ,
    20. Kinzler KW,
    21. Vogelstein B,
    22. Hruban RH,
    23. Maitra A,
    24. Papadopoulos N and
    25. Meeker AK
    : Altered telomeres in tumors with ATRX and DAXX mutations. Science 333(6041): 425, 2011. PMID: 21719641. DOI: 10.1126/science.1207313
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Vanan MI and
    2. Eisenstat DD
    : Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol Pract 1(4): 145-157, 2014. PMID: 26034626. DOI: 10.1093/nop/npu022
    OpenUrlCrossRefPubMed
  86. ↵
    1. Ferris SP,
    2. Goode B,
    3. Joseph NM,
    4. Kline CN,
    5. Samuel D,
    6. Gupta N,
    7. Bollen A,
    8. Perry A,
    9. Mueller S and
    10. Solomon DA
    : IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10 years of age. Acta Neuropathol 132(1): 153-155, 2016. PMID: 27161253. DOI: 10.1007/s00401-016-1579-4
    OpenUrlCrossRefPubMed
  87. ↵
    1. Pollack IF,
    2. Hamilton RL,
    3. Sobol RW,
    4. Nikiforova MN,
    5. Lyons-Weiler MA,
    6. LaFramboise WA,
    7. Burger PC,
    8. Brat DJ,
    9. Rosenblum MK,
    10. Holmes EJ,
    11. Zhou T,
    12. Jakacki RI and Children’s Oncology Group
    : IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst 27(1): 87-94, 2011. PMID: 20725730. DOI: 10.1007/s00381-010-1264-1
    OpenUrlCrossRefPubMed
  88. ↵
    1. Yan H,
    2. Parsons DW,
    3. Jin G,
    4. McLendon R,
    5. Rasheed BA,
    6. Yuan W,
    7. Kos I,
    8. Batinic-Haberle I,
    9. Jones S,
    10. Riggins GJ,
    11. Friedman H,
    12. Friedman A,
    13. Reardon D,
    14. Herndon J,
    15. Kinzler KW,
    16. Velculescu VE,
    17. Vogelstein B and
    18. Bigner DD
    : IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8): 765-773, 2009. PMID: 19228619. DOI: 10.1056/NEJMoa0808710
    OpenUrlCrossRefPubMed
  89. ↵
    1. Hillyar C,
    2. Rallis KS and
    3. Varghese J
    : Advances in epigenetic cancer therapeutics. Cureus 12(11): e11725, 2020. PMID: 33391954. DOI: 10.7759/cureus.11725
    OpenUrlCrossRefPubMed
  90. ↵
    1. Yang H,
    2. Liu Y,
    3. Bai F,
    4. Zhang JY,
    5. Ma SH,
    6. Liu J,
    7. Xu ZD,
    8. Zhu HG,
    9. Ling ZQ,
    10. Ye D,
    11. Guan KL and
    12. Xiong Y
    : Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32(5): 663-669, 2013. PMID: 22391558. DOI: 10.1038/onc.2012.67
    OpenUrlCrossRefPubMed
  91. ↵
    1. Finlay JL,
    2. Boyett JM,
    3. Yates AJ,
    4. Wisoff JH,
    5. Milstein JM,
    6. Geyer JR,
    7. Bertolone SJ,
    8. McGuire P,
    9. Cherlow JM and
    10. Tefft M
    : Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol 13(1): 112-123, 1995. PMID: 7799011. DOI: 10.1200/JCO.1995.13.1.112
    OpenUrlCrossRefPubMed
  92. ↵
    1. Yang T,
    2. Temkin N,
    3. Barber J,
    4. Geyer JR,
    5. Leary S,
    6. Browd S,
    7. Ojemann JG and
    8. Ellenbogen RG
    : Gross total resection correlates with long-term survival in pediatric patients with glioblastoma. World Neurosurg 79(3-4): 537-544, 2013. PMID: 23017588. DOI: 10.1016/j.wneu.2012.09.015
    OpenUrlCrossRefPubMed
  93. ↵
    1. Dufour C,
    2. Grill J,
    3. Lellouch-Tubiana A,
    4. Puget S,
    5. Chastagner P,
    6. Frappaz D,
    7. Doz F,
    8. Pichon F,
    9. Plantaz D,
    10. Gentet JC,
    11. Raquin MA and
    12. Kalifa C
    : High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur J Cancer 42(17): 2939-2945, 2006. PMID: 16962317. DOI: 10.1016/j.ejca.2006.06.021
    OpenUrlCrossRefPubMed
  94. ↵
    1. Ellenberg L,
    2. McComb JG,
    3. Siegel SE and
    4. Stowe S
    : Factors affecting intellectual outcome in pediatric brain tumor patients. Neurosurgery 21(5): 638-644, 1987. PMID: 3696394. DOI: 10.1227/00006123-198711000-00006
    OpenUrlCrossRefPubMed
    1. Spunberg JJ,
    2. Chang CH,
    3. Goldman M,
    4. Auricchio E and
    5. Bell JJ
    : Quality of long-term survival following irradiation for intracranial tumors in children under the age of two. Int J Radiat Oncol Biol Phys 7(6): 727-736, 1981. PMID: 7287533. DOI: 10.1016/0360-3016(81)90465-x
    OpenUrlCrossRefPubMed
    1. Armstrong GT,
    2. Liu Q,
    3. Yasui Y,
    4. Huang S,
    5. Ness KK,
    6. Leisenring W,
    7. Hudson MM,
    8. Donaldson SS,
    9. King AA,
    10. Stovall M,
    11. Krull KR,
    12. Robison LL and
    13. Packer RJ
    : Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst 101(13): 946-958, 2009. PMID: 19535780. DOI: 10.1093/jnci/djp148
    OpenUrlCrossRefPubMed
    1. Mulhern RK,
    2. Merchant TE,
    3. Gajjar A,
    4. Reddick WE and
    5. Kun LE
    : Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol 5(7): 399-408, 2004. PMID: 15231246. DOI: 10.1016/S1470-2045(04)01507-4
    OpenUrlCrossRefPubMed
  95. ↵
    1. Roddy E and
    2. Mueller S
    : Late effects of treatment of pediatric central nervous system tumors. J Child Neurol 31(2): 237-254, 2016. PMID: 26045296. DOI: 10.1177/0883073815587944
    OpenUrlCrossRefPubMed
  96. ↵
    1. Fallai C and
    2. Olmi P
    : Hyperfractionated and accelerated radiation therapy in central nervous system tumors (malignant gliomas, pediatric tumors, and brain metastases). Radiother Oncol 43(3): 235-246, 1997. PMID: 9215782. DOI: 10.1016/s0167-8140(96)01897-x
    OpenUrlCrossRefPubMed
  97. ↵
    1. Pater L
    : Feasibility study of hypofractionated radiotherapy in the setting of recurrent diffuse intrinsic pontine glioma. Available at: https://clinicaltrials.gov/ct2/show/NCT03841435 [Last accessed on May 9, 2022]
  98. ↵
    1. Ruben JD,
    2. Dally M,
    3. Bailey M,
    4. Smith R,
    5. McLean CA and
    6. Fedele P
    : Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65(2): 499-508, 2006. PMID: 16517093. DOI: 10.1016/j.ijrobp.2005.12.002
    OpenUrlCrossRefPubMed
  99. ↵
    1. Tsang DS,
    2. Oliveira C,
    3. Bouffet E,
    4. Hawkins C,
    5. Ramaswamy V,
    6. Yee R,
    7. Tabori U,
    8. Bartels U,
    9. Huang A,
    10. Millar BA,
    11. Crooks B,
    12. Bowes L,
    13. Zelcer S and
    14. Laperriere N
    : Repeat irradiation for children with supratentorial high-grade glioma. Pediatr Blood Cancer 66(9): e27881, 2019. PMID: 31207154. DOI: 10.1002/pbc.27881
    OpenUrlCrossRefPubMed
  100. ↵
    1. University of Calgary
    : ReRAD: A phase II Canadian Pediatric Brain Tumour Consortium study of re-irradiation as treatment of progressive or recurrent diffuse intrinsic pontine glioma. Available at: https://clinicaltrials.gov/ct2/show/NCT03126266 [Last accessed on May 9, 2022]
  101. ↵
    1. Regeneron Pharmaceuticals
    : A safety and pharmacokinetic study of single agent REGN2810 in pediatric patients with relapsed or refractory solid or central nervous system (CNS) tumors and a safety and efficacy trial of REGN2810 in combination with radiotherapy in pediatric patients with newly diagnosed diffuse intrinsic pontine glioma, newly diagnosed high-grade glioma, or recurrent high-grade glioma. Available at: https://clinicaltrials.gov/ct2/show/NCT03690869 [Last accessed on May 9, 2022]
  102. ↵
    1. Rallis KS,
    2. Lai Yau TH and
    3. Sideris M
    : Chemoradiotherapy in cancer treatment: Rationale and clinical applications. Anticancer Res 41(1): 1-7, 2021. PMID: 33419794. DOI: 10.21873/anticanres.14746
    OpenUrlAbstract/FREE Full Text
  103. ↵
    1. Demaria S and
    2. Formenti SC
    : Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2: 153, 2012. PMID: 23112958. DOI: 10.3389/fonc.2012.00153
    OpenUrlCrossRefPubMed
  104. ↵
    1. Golden EB,
    2. Frances D,
    3. Pellicciotta I,
    4. Demaria S,
    5. Helen Barcellos-Hoff M and
    6. Formenti SC
    : Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3: e28518, 2014. PMID: 25071979. DOI: 10.4161/onci.28518
    OpenUrlCrossRefPubMed
  105. ↵
    1. McBride WH,
    2. Chiang CS,
    3. Olson JL,
    4. Wang CC,
    5. Hong JH,
    6. Pajonk F,
    7. Dougherty GJ,
    8. Iwamoto KS,
    9. Pervan M and
    10. Liao YP
    : A sense of danger from radiation. Radiat Res 162(1): 1-19, 2004. PMID: 15222781. DOI: 10.1667/rr3196
    OpenUrlCrossRefPubMed
  106. ↵
    1. Stupp R,
    2. Mason WP,
    3. van den Bent MJ,
    4. Weller M,
    5. Fisher B,
    6. Taphoorn MJ,
    7. Belanger K,
    8. Brandes AA,
    9. Marosi C,
    10. Bogdahn U,
    11. Curschmann J,
    12. Janzer RC,
    13. Ludwin SK,
    14. Gorlia T,
    15. Allgeier A,
    16. Lacombe D,
    17. Cairncross JG,
    18. Eisenhauer E,
    19. Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and National Cancer Institute of Canada Clinical Trials Group
    : Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10): 987-996, 2005. PMID: 15758009. DOI: 10.1056/NEJMoa043330
    OpenUrlCrossRefPubMed
  107. ↵
    1. Cohen KJ,
    2. Pollack IF,
    3. Zhou T,
    4. Buxton A,
    5. Holmes EJ,
    6. Burger PC,
    7. Brat DJ,
    8. Rosenblum MK,
    9. Hamilton RL,
    10. Lavey RS and
    11. Heideman RL
    : Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro Oncol 13(3): 317-323, 2011. PMID: 21339192. DOI: 10.1093/neuonc/noq191
    OpenUrlCrossRefPubMed
  108. ↵
    1. Lee SY
    : Temozolomide resistance in glioblastoma multiforme. Genes Dis 3(3): 198-210, 2016. PMID: 30258889. DOI: 10.1016/j.gendis.2016.04.007
    OpenUrlCrossRefPubMed
  109. ↵
    1. Mannas JP,
    2. Lightner DD,
    3. Defrates SR,
    4. Pittman T and
    5. Villano JL
    : Long-term treatment with temozolomide in malignant glioma. J Clin Neurosci 21(1): 121-123, 2014. PMID: 24063865. DOI: 10.1016/j.jocn.2013.03.039
    OpenUrlCrossRefPubMed
  110. ↵
    1. Noronha V,
    2. Berliner N,
    3. Ballen KK,
    4. Lacy J,
    5. Kracher J,
    6. Baehring J and
    7. Henson JW
    : Treatment-related myelodysplasia/AML in a patient with a history of breast cancer and an oligodendroglioma treated with temozolomide: case study and review of the literature. Neuro Oncol 8(3): 280-283, 2006. PMID: 16728498. DOI: 10.1215/15228517-2006-003
    OpenUrlCrossRefPubMed
  111. ↵
    1. Donson AM,
    2. Addo-Yobo SO,
    3. Handler MH,
    4. Gore L and
    5. Foreman NK
    : MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 48(4): 403-407, 2007. PMID: 16609952. DOI: 10.1002/pbc.20803
    OpenUrlCrossRefPubMed
  112. ↵
    1. Hegi ME,
    2. Diserens AC,
    3. Gorlia T,
    4. Hamou MF,
    5. de Tribolet N,
    6. Weller M,
    7. Kros JM,
    8. Hainfellner JA,
    9. Mason W,
    10. Mariani L,
    11. Bromberg JE,
    12. Hau P,
    13. Mirimanoff RO,
    14. Cairncross JG,
    15. Janzer RC and
    16. Stupp R
    : MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10): 997-1003, 2005. PMID: 15758010. DOI: 10.1056/NEJMoa043331
    OpenUrlCrossRefPubMed
  113. ↵
    1. National Cancer Institute (NCI)
    : NCI-COG pediatric MATCH (Molecular Analysis for Therapy Choice) - Phase 2 subprotocol of LOXO-101 (Larotrectinib) in patients with tumors harboring actionable NTRK fusions. Available at: https://clinicaltrials.gov/ct2/show/NCT03213704 [Last accessed on May 9, 2022]
    1. Bayer
    : A phase 1/2 study of the oral TRK inhibitor larotrectinib in pediatric patients with advanced solid or primary central nervous system tumors. Available at: https://clinicaltrials.gov/ct2/show/NCT02637687 [Last accessed on May 9, 2022]
    1. Bayer
    : A phase 2 basket study of the oral TRK inhibitor larotrectinib in subjects with NTRK fusion-positive tumors. Available at: https://clinicaltrials.gov/ct2/show/NCT02576431 [Last accessed on May 9, 2022]
  114. ↵
    1. Nationwide Children’s Hospital
    : A pilot and surgical study of larotrectinib for treatment of children with newly-diagnosed highgrade glioma with NTRK fusion. Available at: https://clinicaltrials.gov/ct2/show/NCT04655404 [Last accessed on May 9, 2022]
  115. ↵
    1. Lund-Johansen M,
    2. Bjerkvig R,
    3. Humphrey PA,
    4. Bigner SH,
    5. Bigner DD and
    6. Laerum OD
    : Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res 50(18): 6039-6044, 1990. PMID: 2393868.
    OpenUrlAbstract/FREE Full Text
    1. Chakravarti A,
    2. Chakladar A,
    3. Delaney MA,
    4. Latham DE and
    5. Loeffler JS
    : The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in a RAS-dependent manner. Cancer Res 62(15): 4307-4315, 2002. PMID: 12154034.
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Nagane M,
    2. Levitzki A,
    3. Gazit A,
    4. Cavenee WK and
    5. Huang HJ
    : Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A 95(10): 5724-5729, 1998. PMID: 9576951. DOI: 10.1073/pnas.95.10.5724
    OpenUrlAbstract/FREE Full Text
  117. ↵
    1. Liu X,
    2. Chen X,
    3. Shi L,
    4. Shan Q,
    5. Cao Q,
    6. Yue C,
    7. Li H,
    8. Li S,
    9. Wang J,
    10. Gao S,
    11. Niu M and
    12. Yu R
    : The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res 38(1): 219, 2019. PMID: 31122294. DOI: 10.1186/s13046-019-1235-7
    OpenUrlCrossRefPubMed
  118. ↵
    1. Nagano T,
    2. Tachihara M and
    3. Nishimura Y
    : Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy. Cells 7(11): 212, 2018. PMID: 30445769. DOI: 10.3390/cells7110212
    OpenUrlCrossRefPubMed
  119. ↵
    1. Sun Y,
    2. Bailey C,
    3. Whitehead C,
    4. Sebolt-leopold J and
    5. Chandra J
    : THER-29. Novel dual EGFR/PI3-kinase inhibitors show enhanced potency, stronger pathway suppression and targeting of metabolic properties in pediatric and adult high grade glioma models than single kinase inhibitors. Neuro-Oncology 21(Suppl_2): ii120-ii120, 2019. DOI: 10.1093/neuonc/noz036.234
    OpenUrlCrossRef
  120. ↵
    1. Lu Y,
    2. Chen D,
    3. Liang J,
    4. Gao J,
    5. Luo Z,
    6. Wang R,
    7. Liu W,
    8. Huang C,
    9. Ning X,
    10. Liu M and
    11. Huang H
    : Administration of nimotuzumab combined with cisplatin plus 5-fluorouracil as induction therapy improves treatment response and tolerance in patients with locally advanced nasopharyngeal carcinoma receiving concurrent radiochemotherapy: a multicenter randomized controlled study. BMC Cancer 19(1): 1262, 2019. PMID: 31888551. DOI: 10.1186/s12885-019-6459-6
    OpenUrlCrossRefPubMed
  121. ↵
    1. Petterson SA,
    2. Dahlrot RH,
    3. Hermansen SK,
    4. K A Munthe S,
    5. Gundesen MT,
    6. Wohlleben H,
    7. Rasmussen T,
    8. Beier CP,
    9. Hansen S and
    10. Kristensen BW
    : High levels of c-Met is associated with poor prognosis in glioblastoma. J Neurooncol 122(3): 517-527, 2015. PMID: 25800004. DOI: 10.1007/s11060-015-1723-3
    OpenUrlCrossRefPubMed
  122. ↵
    1. Jia H,
    2. Dai G,
    3. Weng J,
    4. Zhang Z,
    5. Wang Q,
    6. Zhou F,
    7. Jiao L,
    8. Cui Y,
    9. Ren Y,
    10. Fan S,
    11. Zhou J,
    12. Qing W,
    13. Gu Y,
    14. Wang J,
    15. Sai Y and
    16. Su W
    : Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1 H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J Med Chem 57(18): 7577-7589, 2014. PMID: 25148209. DOI: 10.1021/jm500510f
    OpenUrlCrossRefPubMed
  123. ↵
    1. Robinson GW,
    2. Orr BA and
    3. Gajjar A
    : Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer 14: 258, 2014. PMID: 24725538. DOI: 10.1186/1471-2407-14-258
    OpenUrlCrossRefPubMed
  124. ↵
    1. Hargrave D,
    2. Moreno L,
    3. Broniscer A,
    4. Bouffet E,
    5. Aerts I,
    6. Andre N,
    7. Shen W,
    8. Bertozzi-Salamon A,
    9. Cohen K,
    10. Dunkel I,
    11. Kieran M,
    12. Lissat A,
    13. Russo M,
    14. Dasgupta K,
    15. Tseng L,
    16. Mookerjee B and
    17. Geoerger B
    : Dabrafenib in pediatric patients with BRAF V600-positive high-grade glioma (HGG). Journal of Clinical Oncology 36(15_Suppl): 10505-10505, 2019. DOI: 10.1200/JCO.2018.36.15_suppl.10505
    OpenUrlCrossRef
  125. ↵
    1. Hargrave DR,
    2. Bouffet E,
    3. Tabori U,
    4. Broniscer A,
    5. Cohen KJ,
    6. Hansford JR,
    7. Geoerger B,
    8. Hingorani P,
    9. Dunkel IJ,
    10. Russo MW,
    11. Tseng L,
    12. Dasgupta K,
    13. Gasal E,
    14. Whitlock JA and
    15. Kieran MW
    : Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin Cancer Res 25(24): 7303-7311, 2019. PMID: 31811016. DOI: 10.1158/1078-0432.CCR-19-2177
    OpenUrlAbstract/FREE Full Text
    1. Kieran MW,
    2. Geoerger B,
    3. Dunkel IJ,
    4. Broniscer A,
    5. Hargrave D,
    6. Hingorani P,
    7. Aerts I,
    8. Bertozzi AI,
    9. Cohen KJ,
    10. Hummel TR,
    11. Shen V,
    12. Bouffet E,
    13. Pratilas CA,
    14. Pearson ADJ,
    15. Tseng L,
    16. Nebot N,
    17. Green S,
    18. Russo MW and
    19. Whitlock JA
    : A phase I and pharmacokinetic study of oral dabrafenib in children and adolescent patients with recurrent or refractory BRAF V600 mutation-positive solid tumors. Clin Cancer Res 25(24): 7294-7302, 2019. PMID: 31506385. DOI: 10.1158/1078-0432.CCR-17-3572
    OpenUrlAbstract/FREE Full Text
    1. Nicolaides T,
    2. Nazemi K,
    3. Crawford J,
    4. Kilburn L,
    5. Minturn J,
    6. Gajjar A,
    7. Gauvain K,
    8. Leary S,
    9. Dhall G,
    10. Aboian M,
    11. Robinson G,
    12. Molinaro A,
    13. Mueller S and
    14. Prados M
    : PDCT-19. A safety study of vemurafenib, an oral inhibitor of BRAFV600E, in children with recurrent/refractory BRAFV600E mutant brain tumors: PNOC-002. Neuro-Oncology 19(suppl_6): vi188-vi188, 2017. DOI: 10.1093/neuonc/nox168.761
    OpenUrlCrossRef
  126. ↵
    1. Kieran M,
    2. Bouffet E,
    3. Broniscer A,
    4. Cohen K,
    5. Geoerger B,
    6. Hansford J,
    7. Hingorani P,
    8. Aerts I,
    9. Andre N,
    10. Bertozzi-Salamon A,
    11. Dunkel I,
    12. Hummel T,
    13. Leary S,
    14. Moreno L,
    15. Russo M,
    16. Tseng L,
    17. Dasgupta K,
    18. Nebot N,
    19. Whitlock J and
    20. Hargrave D
    : Efficacy and safety results from a phase I/IIa study of dabrafenib in pediatric patients with BRAF V600-mutant relapsed refractory low-grade glioma. Journal of Clinical Oncology 36(15_suppl): 10506-10506, 2019. DOI: 10.1200/JCO.2018.36.15_suppl.10506
    OpenUrlCrossRef
  127. ↵
    1. Karajannis MA,
    2. Legault G,
    3. Fisher MJ,
    4. Milla SS,
    5. Cohen KJ,
    6. Wisoff JH,
    7. Harter DH,
    8. Goldberg JD,
    9. Hochman T,
    10. Merkelson A,
    11. Bloom MC,
    12. Sievert AJ,
    13. Resnick AC,
    14. Dhall G,
    15. Jones DT,
    16. Korshunov A,
    17. Pfister SM,
    18. Eberhart CG,
    19. Zagzag D and
    20. Allen JC
    : Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol 16(10): 1408-1416, 2014. PMID: 24803676. DOI: 10.1093/neuonc/nou059
    OpenUrlCrossRefPubMed
  128. ↵
    1. Packer RJ and
    2. Kilburn L
    : Molecular-targeted therapy for childhood brain tumors: a moving target. J Child Neurol 35(12): 791-798, 2020. PMID: 32552173. DOI: 10.1177/0883073820931635
    OpenUrlCrossRefPubMed
  129. ↵
    1. Long GV,
    2. Stroyakovskiy D,
    3. Gogas H,
    4. Levchenko E,
    5. de Braud F,
    6. Larkin J,
    7. Garbe C,
    8. Jouary T,
    9. Hauschild A,
    10. Grob JJ,
    11. Chiarion Sileni V,
    12. Lebbe C,
    13. Mandalà M,
    14. Millward M,
    15. Arance A,
    16. Bondarenko I,
    17. Haanen JB,
    18. Hansson J,
    19. Utikal J,
    20. Ferraresi V,
    21. Kovalenko N,
    22. Mohr P,
    23. Probachai V,
    24. Schadendorf D,
    25. Nathan P,
    26. Robert C,
    27. Ribas A,
    28. DeMarini DJ,
    29. Irani JG,
    30. Casey M,
    31. Ouellet D,
    32. Martin AM,
    33. Le N,
    34. Patel K and
    35. Flaherty K
    : Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med 371(20): 1877-1888, 2014. PMID: 25265492. DOI: 10.1056/NEJMoa1406037
    OpenUrlCrossRefPubMed
  130. ↵
    1. Tien A,
    2. Bao X,
    3. Derogatis A,
    4. Kim S,
    5. Mehta S,
    6. Li J and
    7. Sanai N
    : ACTR-45. Phase 0/2 study of ribociclib in patients with recurrent glioblastoma. Neuro-Oncology 20(Suppl_6): vi21-vi21, 2018. DOI: 10.1093/neuonc/noy148.077
    OpenUrlCrossRef
  131. ↵
    1. Pal S,
    2. Kozono D,
    3. Yang X,
    4. Fendler W,
    5. Fitts W,
    6. Ni J,
    7. Alberta JA,
    8. Zhao J,
    9. Liu KX,
    10. Bian J,
    11. Truffaux N,
    12. Weiss WA,
    13. Resnick AC,
    14. Bandopadhayay P,
    15. Ligon KL,
    16. DuBois SG,
    17. Mueller S,
    18. Chowdhury D and
    19. Haas-Kogan DA
    : Dual HDAC and PI3K inhibition abrogates NFκB- and FOXM1-mediated DNA damage response to radiosensitize pediatric high-grade gliomas. Cancer Res 78(14): 4007-4021, 2018. PMID: 29760046. DOI: 10.1158/0008-5472.CAN-17-3691
    OpenUrlAbstract/FREE Full Text
  132. ↵
    1. Batsios G,
    2. Viswanath P,
    3. Subramani E,
    4. Najac C,
    5. Gillespie AM,
    6. Santos RD,
    7. Molloy AR,
    8. Pieper RO and
    9. Ronen SM
    : PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 9(1): 10521, 2019. PMID: 31324855. DOI: 10.1038/s41598-019-47021-x
    OpenUrlCrossRefPubMed
  133. ↵
    1. Michaud K,
    2. Solomon DA,
    3. Oermann E,
    4. Kim JS,
    5. Zhong WZ,
    6. Prados MD,
    7. Ozawa T,
    8. James CD and
    9. Waldman T
    : Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res 70(8): 3228-3238, 2010. PMID: 20354191. DOI: 10.1158/0008-5472.CAN-09-4559
    OpenUrlAbstract/FREE Full Text
  134. ↵
    1. Sepulveda-sanchez J,
    2. Gil gil M,
    3. Alonso M,
    4. Vaz salgado M,
    5. Vicente E,
    6. Mesia barroso C,
    7. Rodriguez sanchez A,
    8. Durán G,
    9. De las penas R,
    10. Muñoz-langa J,
    11. De velasco G,
    12. Hernandez-lain A,
    13. Hilario A,
    14. Navarro L,
    15. Benavides M,
    16. Oleaga L,
    17. Cantero D,
    18. Ruano Y,
    19. Sanchez-gomez P and
    20. Pineda E
    : Phase II trial of palbociclib in recurrent RB-positive anaplastic oligodendroglioma: A Spanish group for research in neurooncology (GEINO) trial. Journal of Clinical Oncology 37(15_suppl): 2038-2038, 2020. DOI: 10.1200/JCO.2019.37.15_suppl.2038
    OpenUrlCrossRef
  135. ↵
    1. Su YT,
    2. Chen R,
    3. Wang H,
    4. Song H,
    5. Zhang Q,
    6. Chen LY,
    7. Lappin H,
    8. Vasconcelos G,
    9. Lita A,
    10. Maric D,
    11. Li A,
    12. Celiku O,
    13. Zhang W,
    14. Meetze K,
    15. Estok T,
    16. Larion M,
    17. Abu-Asab M,
    18. Zhuang Z,
    19. Yang C,
    20. Gilbert MR and
    21. Wu J
    : Novel targeting of transcription and metabolism in glioblastoma. Clin Cancer Res 24(5): 1124-1137, 2018. PMID: 29254993. DOI: 10.1158/1078-0432.CCR-17-2032
    OpenUrlAbstract/FREE Full Text
  136. ↵
    1. Raub TJ,
    2. Wishart GN,
    3. Kulanthaivel P,
    4. Staton BA,
    5. Ajamie RT,
    6. Sawada GA,
    7. Gelbert LM,
    8. Shannon HE,
    9. Sanchez-Martinez C and
    10. De Dios A
    : Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos 43(9): 1360-1371, 2015. PMID: 26149830. DOI: 10.1124/dmd.114.062745
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Juric V and
    2. Murphy B
    : Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions. Cancer Drug Resist 3: 48-62, 2020. DOI: 10.20517/cdr.2019.105
    OpenUrlCrossRef
  138. ↵
    1. Martínez-Chávez A,
    2. van Hoppe S,
    3. Rosing H,
    4. Lebre MC,
    5. Tibben M,
    6. Beijnen JH and
    7. Schinkel AH
    : P-glycoprotein limits ribociclib brain exposure and CYP3A4 restricts its oral bioavailability. Mol Pharm 16(9): 3842-3852, 2019. PMID: 31329454. DOI: 10.1021/acs.molpharmaceut.9b00475
    OpenUrlCrossRefPubMed
  139. ↵
    1. Williams MJ,
    2. Singleton WG,
    3. Lowis SP,
    4. Malik K and
    5. Kurian KM
    : Therapeutic targeting of histone modifications in adult and pediatric high-grade glioma. Front Oncol 7: 45, 2017. PMID: 28401060. DOI: 10.3389/fonc.2017.00045
    OpenUrlCrossRefPubMed
  140. ↵
    1. Ralff MD,
    2. Lulla AR,
    3. Wagner J and
    4. El-Deiry WS
    : ONC201: a new treatment option being tested clinically for recurrent glioblastoma. Transl Cancer Res 6(Suppl 7): S1239-S1243, 2017. PMID: 30175049. DOI: 10.21037/tcr.2017.10.03
    OpenUrlCrossRefPubMed
  141. ↵
    1. Graves PR,
    2. Aponte-Collazo LJ,
    3. Fennell EMJ,
    4. Graves AC,
    5. Hale AE,
    6. Dicheva N,
    7. Herring LE,
    8. Gilbert TSK,
    9. East MP,
    10. McDonald IM,
    11. Lockett MR,
    12. Ashamalla H,
    13. Moorman NJ,
    14. Karanewsky DS,
    15. Iwanowicz EJ,
    16. Holmuhamedov E and
    17. Graves LM
    : Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues. ACS Chem Biol 14(5): 1020-1029, 2019. PMID: 31021596. DOI: 10.1021/acschembio.9b00222
    OpenUrlCrossRefPubMed
  142. ↵
    1. Ishizawa J,
    2. Zarabi SF,
    3. Davis RE,
    4. Halgas O,
    5. Nii T,
    6. Jitkova Y,
    7. Zhao R,
    8. St-Germain J,
    9. Heese LE,
    10. Egan G,
    11. Ruvolo VR,
    12. Barghout SH,
    13. Nishida Y,
    14. Hurren R,
    15. Ma W,
    16. Gronda M,
    17. Link T,
    18. Wong K,
    19. Mabanglo M,
    20. Kojima K,
    21. Borthakur G,
    22. MacLean N,
    23. Ma MCJ,
    24. Leber AB,
    25. Minden MD,
    26. Houry W,
    27. Kantarjian H,
    28. Stogniew M,
    29. Raught B,
    30. Pai EF,
    31. Schimmer AD and
    32. Andreeff M
    : Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35(5): 721-737.e9, 2019. PMID: 31056398. DOI: 10.1016/j.ccell.2019.03.014
    OpenUrlCrossRefPubMed
  143. ↵
    1. Arrillaga-Romany I,
    2. Chi AS,
    3. Allen JE,
    4. Oster W,
    5. Wen PY and
    6. Batchelor TT
    : A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma. Oncotarget 8(45): 79298-79304, 2017. PMID: 29108308. DOI: 10.18632/oncotarget.17837
    OpenUrlCrossRefPubMed
  144. ↵
    1. Hall MD,
    2. Odia Y,
    3. Allen JE,
    4. Tarapore R,
    5. Khatib Z,
    6. Niazi TN,
    7. Daghistani D,
    8. Schalop L,
    9. Chi AS,
    10. Oster W and
    11. Mehta MP
    : First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report. J Neurosurg Pediatr 23(6): 719-725, 2019. PMID: 30952114. DOI: 10.3171/2019.2.PEDS18480
    OpenUrlCrossRefPubMed
  145. ↵
    1. Chi A,
    2. Stafford J,
    3. Sen N,
    4. Possemato R,
    5. Placantonakis D,
    6. Hidalgo E,
    7. Harter D,
    8. Wisoff J,
    9. Golfinos J,
    10. Arrillaga-romany I,
    11. Batchelor T,
    12. Wen P,
    13. Wakimoto H,
    14. Cahill D,
    15. Allen J,
    16. Oster W and
    17. Snuderl M
    : EXTH-42. H3 K27M mutant gliomas are selectively killed by ONC201, a small molecule inhibitor of dopamine receptor D2. Neuro-Oncology 19(Suppl_6): vi81-vi81, 2017. DOI: 10.1093/neuonc/nox168.334
    OpenUrlCrossRef
  146. ↵
    1. Shen H,
    2. Yu M,
    3. Tsoli M,
    4. Chang C,
    5. Joshi S,
    6. Liu J,
    7. Ryall S,
    8. Chornenkyy Y,
    9. Siddaway R,
    10. Hawkins C and
    11. Ziegler DS
    : Targeting reduced mitochondrial DNA quantity as a therapeutic approach in pediatric high-grade gliomas. Neuro Oncol 22(1): 139-151, 2020. PMID: 31398252. DOI: 10.1093/neuonc/noz140
    OpenUrlCrossRefPubMed
  147. ↵
    1. Huang J,
    2. Yu J,
    3. Tu L,
    4. Huang N,
    5. Li H and
    6. Luo Y
    : Isocitrate dehydrogenase mutations in glioma: from basic discovery to therapeutics development. Front Oncol 9: 506, 2019. PMID: 31263678. DOI: 10.3389/fonc.2019.00506
    OpenUrlCrossRefPubMed
  148. ↵
    1. Mellinghoff I,
    2. Penas-prado M,
    3. Peters K,
    4. Cloughesy T,
    5. Burris H,
    6. Maher E,
    7. Janku F,
    8. Cote G, De la
    9. fuente M,
    10. Clarke J,
    11. Steelman L,
    12. Le K,
    13. Zhang Y,
    14. Sonderfan A,
    15. Hummel D,
    16. Schoenfeld S,
    17. Yen K,
    18. Pandya S and
    19. Wen P
    : Phase 1 study of AG-881, an inhibitor of mutant IDH1/IDH2, in patients with advanced IDH-mutant solid tumors, including glioma. Journal of Clinical Oncology 36(15_Suppl): 2002-2002, 2019. DOI: 10.1200/JCO.2018.36.15_suppl.2002
    OpenUrlCrossRef
  149. ↵
    1. Fan B,
    2. Mellinghoff IK,
    3. Wen PY,
    4. Lowery MA,
    5. Goyal L,
    6. Tap WD,
    7. Pandya SS,
    8. Manyak E,
    9. Jiang L,
    10. Liu G,
    11. Nimkar T,
    12. Gliser C,
    13. Prahl Judge M,
    14. Agresta S,
    15. Yang H and
    16. Dai D
    : Clinical pharmacokinetics and pharmacodynamics of ivosidenib, an oral, targeted inhibitor of mutant IDH1, in patients with advanced solid tumors. Invest New Drugs 38(2): 433-444, 2020. PMID: 31028664. DOI: 10.1007/s10637-019-00771-x
    OpenUrlCrossRefPubMed
  150. ↵
    1. Sulkowski PL,
    2. Corso CD,
    3. Robinson ND,
    4. Scanlon SE,
    5. Purshouse KR,
    6. Bai H,
    7. Liu Y,
    8. Sundaram RK,
    9. Hegan DC,
    10. Fons NR,
    11. Breuer GA,
    12. Song Y,
    13. Mishra-Gorur K,
    14. De Feyter HM,
    15. De Graaf RA,
    16. Surovtseva YV,
    17. Kachman M,
    18. Halene S,
    19. Günel M,
    20. Glazer PM and
    21. Bindra RS
    : 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 9(375): eaal2463, 2017. PMID: 28148839. DOI: 10.1126/scitranslmed.aal2463
    OpenUrlAbstract/FREE Full Text
  151. ↵
    1. Hanna C,
    2. Kurian KM,
    3. Williams K,
    4. Watts C,
    5. Jackson A,
    6. Carruthers R,
    7. Strathdee K,
    8. Cruickshank G,
    9. Dunn L,
    10. Erridge S,
    11. Godfrey L,
    12. Jefferies S,
    13. McBain C,
    14. Sleigh R,
    15. McCormick A,
    16. Pittman M,
    17. Halford S and
    18. Chalmers AJ
    : Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol 22(12): 1840-1850, 2020. PMID: 32347934. DOI: 10.1093/neuonc/noaa104
    OpenUrlCrossRefPubMed
  152. ↵
    1. Orlowski RZ and
    2. Kuhn DJ
    : Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14(6): 1649-1657, 2008. PMID: 18347166. DOI: 10.1158/1078-0432.CCR-07-2218
    OpenUrlAbstract/FREE Full Text
  153. ↵
    1. Duffy MJ,
    2. McKiernan E,
    3. O’Donovan N and
    4. McGowan PM
    : Role of ADAMs in cancer formation and progression. Clin Cancer Res 15(4): 1140-1144, 2009. PMID: 19228719. DOI: 10.1158/1078-0432.CCR-08-1585
    OpenUrlAbstract/FREE Full Text
  154. ↵
    1. Duffy MJ,
    2. McKiernan E,
    3. O’Donovan N and
    4. McGowan PM
    : The role of ADAMs in disease pathophysiology. Clin Chim Acta 403(1-2): 31-36, 2009. PMID: 19408347. DOI: 10.1016/j.cca.2009.01.007
    OpenUrlCrossRefPubMed
  155. ↵
    1. Newton R,
    2. Bradley E,
    3. Levy R,
    4. Doval D,
    5. Bondarde S,
    6. Sahoo T,
    7. Lokanatha D,
    8. Julka P,
    9. Nagarkar R and
    10. Friedman S
    : Clinical benefit of INCB7839, a potent and selective ADAM inhibitor, in combination with trastuzumab in patients with metastatic HER2+ breast cancer. Journal of Clinical Oncology 28(15_Suppl): 3025-3025, 2019. DOI: 10.1200/jco.2010.28.15_suppl.3025
    OpenUrlCrossRef
  156. ↵
    1. Le Naour J,
    2. Galluzzi L,
    3. Zitvogel L,
    4. Kroemer G and
    5. Vacchelli E
    : Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 9(1): 1777625, 2020. PMID: 32934882. DOI: 10.1080/2162402X.2020.1777625
    OpenUrlCrossRefPubMed
  157. ↵
    1. Hanihara M,
    2. Kawataki T,
    3. Oh-Oka K,
    4. Mitsuka K,
    5. Nakao A and
    6. Kinouchi H
    : Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J Neurosurg 124(6): 1594-1601, 2016. PMID: 26636389. DOI: 10.3171/2015.5.JNS141901
    OpenUrlCrossRefPubMed
  158. ↵
    1. Johnson T,
    2. Aguilera D,
    3. Al-basheer A,
    4. Berrong Z,
    5. Castellino R,
    6. Eaton B,
    7. Esiashvili N,
    8. Foreman N,
    9. Heger I,
    10. Kennedy E,
    11. Vahanian N,
    12. Martin W,
    13. Pacholczyk R,
    14. Ring E,
    15. Sadek R,
    16. Smith A,
    17. Shimoda M,
    18. Macdonald T and
    19. Munn D
    : Results of the NLG2105 phase I trial using the IDO pathway inhibitor indoximod, in combination with radiation and chemotherapy, for children with newly diagnosed DIPG. Annals of Oncology 30: xi38, 2020. DOI: 10.1093/annonc/mdz451.010
    OpenUrlCrossRef
  159. ↵
    1. Prendergast GC,
    2. Mondal A,
    3. Dey S,
    4. Laury-Kleintop LD and
    5. Muller AJ
    : Inflammatory reprogramming with IDO1 inhibitors: Turning immunologically unresponsive ‘cold’ tumors ‘hot’. Trends Cancer 4(1): 38-58, 2018. PMID: 29413421. DOI: 10.1016/j.trecan.2017.11.005
    OpenUrlCrossRefPubMed
  160. ↵
    1. Mackay A,
    2. Burford A,
    3. Molinari V,
    4. Jones DTW,
    5. Izquierdo E,
    6. Brouwer-Visser J,
    7. Giangaspero F,
    8. Haberler C,
    9. Pietsch T,
    10. Jacques TS,
    11. Figarella-Branger D,
    12. Rodriguez D,
    13. Morgan PS,
    14. Raman P,
    15. Waanders AJ,
    16. Resnick AC,
    17. Massimino M,
    18. Garrè ML,
    19. Smith H,
    20. Capper D,
    21. Pfister SM,
    22. Würdinger T,
    23. Tam R,
    24. Garcia J,
    25. Thakur MD,
    26. Vassal G,
    27. Grill J,
    28. Jaspan T,
    29. Varlet P and
    30. Jones C
    : Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial. Cancer Cell 33(5): 829-842.e5, 2018. PMID: 29763623. DOI: 10.1016/j.ccell.2018.04.004
    OpenUrlCrossRefPubMed
  161. ↵
    1. Forbes DJ,
    2. Travesa A,
    3. Nord MS and
    4. Bernis C
    : Nuclear transport factors: global regulation of mitosis. Curr Opin Cell Biol 35: 78-90, 2015. PMID: 25982429. DOI: 10.1016/j.ceb.2015.04.012
    OpenUrlCrossRefPubMed
  162. ↵
    1. Shen A,
    2. Wang Y,
    3. Zhao Y,
    4. Zou L,
    5. Sun L and
    6. Cheng C
    : Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65(1): 153-9; discussion 159-60, 2009. PMID: 19574837. DOI: 10.1227/01.NEU.0000348550.47441.4B
    OpenUrlCrossRefPubMed
  163. ↵
    1. Abdul Razak AR,
    2. Mau-Soerensen M,
    3. Gabrail NY,
    4. Gerecitano JF,
    5. Shields AF,
    6. Unger TJ,
    7. Saint-Martin JR,
    8. Carlson R,
    9. Landesman Y,
    10. McCauley D,
    11. Rashal T,
    12. Lassen U,
    13. Kim R,
    14. Stayner LA,
    15. Mirza MR,
    16. Kauffman M,
    17. Shacham S and
    18. Mahipal A
    : First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol 34(34): 4142-4150, 2016. PMID: 26926685. DOI: