Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Genomics & Proteomics
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Cancer Genomics & Proteomics

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Review ArticleReview
Open Access

Long Non-coding RNAs With In Vitro and In Vivo Efficacy in Preclinical Models of Esophageal Squamous Cell Carcinoma Which Act by a Non-microRNA Sponging Mechanism

ULRICH H. WEIDLE and FABIAN BIRZELE
Cancer Genomics & Proteomics July 2022, 19 (4) 372-389; DOI: https://doi.org/10.21873/cgp.20327
ULRICH H. WEIDLE
1Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: weidle49@t-online.de fabian.birzele@roche.com
FABIAN BIRZELE
2Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: weidle49@t-online.de fabian.birzele@roche.com
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Esophageal squamous cell carcinoma is a type of cancer with dismal prognosis. Surgery, chemo- and radiation therapy, as well as immune checkpoint-blocking immunotherapy lead to limited improvement of survival of patients; therapy resistance and recurrencies hamper these treatment modalities. Therefore, the identification of new targets and treatment approaches is of paramount importance. We have searched the literature and identified 7 down-regulated and 16 up-regulated non-coding RNAs, which showed efficacy in preclinical esophageal squamous cell carcinoma-related in vitro and in vivo models, and discuss their diverse mode of actions. We excluded long non-coding RNAs, which act by sponging of microRNAs. It is presently unclear whether long non-coding RNA/protein, DNA and RNA interactions can be targeted with small molecules. We describe reconstitution therapy and inhibition of the corresponding long non-coding RNAs with small interfering RNAs and antisense oligonucleotides. Also, we discuss emerging targets for treatment of esophageal squamous cell carcinoma.

Key Words:
  • Antisense oligonucleotides (ASO)
  • mode of action of long-non coding RNAs
  • oncogenic and tumor-suppressive lncRNAs
  • reconstitution and inhibition of lncRNAs
  • siRNA
  • xenografts
  • review

Among cancers, esophageal cancer ranks eighth in terms of incidence and sixth in terms of mortality (1). Two subtypes have been identified: esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). EAC occurs in the lower and middle part of the esophagus and derives from esophagus glandular cells near the stomach. ESCC is found in the upper part of the esophagus and originates from the esophageal squamous epithelium (2). EAC is the predominant subtype in Europe and North America, whereas ESCC is the most frequent subtype in Southeast Asia and Africa (2). Despite treatment by surgery, radiation, chemotherapy with 5-fluorouracil (5-FU) and irinotecan, and immunotherapy with monoclonal antibodies (mAbs) directed against programmed cell death protein 1 (PD1) (pembrolizumab and nivolumab), patients with EC have a dismal prognosis (3-5). Many types of therapeutic interventions such as targeting the epidermal growth factor receptor (EGFR), vascular endothelial growth factor and receptor (VEGF and VEGFR), hepatocyte growth factor (HGF)/tyrosine kinase c-MET as well as the mechanistic target of rapamycin (mTOR) pathway and epigenetic therapies are under exploration (3-5). Among the problems to be tackled are high mutational load, therapy resistance, spatial intratumoral heterogeneity and temporal clonal evolution (6-9). In this review, we focus on long non-coding RNAs (lncRNAs) with efficacy in ESCC-related preclinical in vitro and in vivo models in order to explore new treatment entities and to identify new targets for therapy of ESCC.

Role of Long Non-coding RNAs in Cancer

lncRNAs comprise more than 200 nucleotides (nts) and are transcribed by RNA pol II and III (10). More than 60,000 lncRNAs are predicted in humans (11). They are involved in cancer cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), apoptosis and anti-tumor drug resistance (10). lncRNAs are predominantly located in the nucleus, whereas a minority is transported to the cytoplasm (11). They can act as oncogenes as well as tumor suppressors (TS) (12-14). These effects are achieved by a multitude of functional properties, such as transcriptional regulation, post-transcriptional regulation of mRNA stability, modulation of chromatin structure and chromatin positioning by recruitment of chromatin-modifying enzymes, regulation of splicing, translation and protein stability, assembly of membrane-less nuclear bodies, self-activation of genes by natural antisense transcripts and mRNA modification (15-17). lncRNAs can modulate signaling pathways, such as AKT, NOTCH, p53, WNT/β catenin and hypoxia inducible factor 1(HIF-1) driven processes (18). Among the mechanisms involved in physiological functions of lncRNAs are sponging of microRNAs as well as physical interaction with nucleic acids, protein, and lipids via interactor elements (18).

Down-regulated lncRNAs and lncRNAs Involved in Signaling

lncRNA NKILA targets nuclear factor κB signaling. lncRNA NFκB interacting (NKILA) was down-regulated in ESCC samples and correlated with poor prognosis (19, 20). NKILA inhibited proliferation of Eca109 and Eca9706 ESCC cells as well as migration and invasion of Eca109, Eca9706, KYSE30 and KYSE180 ESCC cells in vitro. Knockdown of NKILA stimulated growth of Eca109 cells and increased lung metastases of Eca109, Eca9706 and KYSE30 cells after tail vein injection into nude mice (19, 20). It was shown that NKILA inhibited signaling of nuclear factor κB (NFκB), an inducible transcription factor. NFκB signaling is activated by phosphorylation of nuclear factor of κ light polypeptide gene enhancer in B-cells, inhibitor α (IκBα) through IκB kinase (IKK), which leads to translocation of NFκB into the nucleus. NKILA interferes directly with IκBα and blocks its phosphorylation sites leading to interruption of NFκB signaling (19-21) (Figure 1, Figure 2, Figure 3, Figure 4, and Figure 5A). Matrix metalloproteinase 14 (MMP14), a transmembrane protease which activates MMP2 and confers aggressive biological properties was identified as a downstream effector of NFκB signaling (19, 22). MMP14 mediates proliferation, migration and invasion of ESCC cells and high MMP14 correlates with poor survival (23-25). NFκB signaling plays a role in cancer formation, promotion of inflammation (26), and cancer development and progression (27). Therefore, this pathway is a target of anticancer drug development (28). It has been shown that targeting NFκB signaling suppresses TG, angiogenesis and metastases in preclinical models of ESCC (29).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Down-regulated long non-coding RNAs with efficacy in preclinical esophageal squamous cell carcinoma related in vitro and in vivo models. Upward arrows indicate up-regulation, downward arrows indicate down-regulation. ADAMTS9-AS2: ADAM metalloproteinase with thrombospondin type 9 motif antisense RNA2; DHX9: DExH-box helicase 9; DKK1: dickkopf-related protein 1; DNMT1,3: DNA methyltransferase 1,3; EMT: epithelial-mesenchymal transition; ILF3: interleukin enhancer binding factor 3; GASL1: growth-arrest-associated long non-coding RNA1; HSP27: heat shock protein 27; IκBα: nuclear factor κB inhibitor α; IRF1: interferon regulatory factor 1; IRF1 -AS: interferon regulatory factor 1- antisense RNA; LAMC2: laminin γ2; LINC 0051: long intergenic non-protein coding RNA 0051; MET: metastasis; MTA2: metastasis-associated 2; c-MYC: transcription factor c-MYC; NFκB: nuclear factor κB; NKILA: NFκB interacting lncRNA; SNHG5: small nucleolar RNA host gene 5; TG: tumor growth; TINCR: terminal differentiation inducing non protein coding RNA; WNT3A: wingless-type MMTV integration site family, member 3A; ZNF 750: zinc finger 750.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Upregulated long non-coding RNAs mediating increase of transcription factors with efficacy in preclinical esophageal squamous cell carcinoma related in vitro and in vivo models. Upward arrows indicate upregulation, downward arrows indicate down-regulation. BAALC-AS1: BAALC-antisense 1; c-MYC: transcription factor c-MYC; EZH2: enhancer of zeste homolog 2; G3BP2: GAPSH3 domain binding protein 2; LINC00152: long intergenic non-coding RNA 00152; LINC02042: long intergenic non-protein coding RNA 2042; NF-YA: nuclear transcription factor Y-subunit α; PANDA: p21 nuclear RNA DNA damage activated lncRNA; SAFA: scaffold attachment factor A; TG: tumor growth; YB1: Y-box binding protein 1; ZEB1: zinc finger e-box binding homeobox 1.

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Up-regulated long non-coding RNAs mediating modulation of signaling and cell-cycle related targets with efficacy in preclinical esophageal squamous cell carcinoma in vitro and in vivo models. Upward arrows indicate up-regulation, downward arrows indicate down-regulation. ATM: Ataxia telangiectasia mutated; CCAT1: lncRNA colon cancer-associated transcript 1; CDKN2C: cyclin-dependent kinase 4 inhibitor C; CHK2: checkpoint kinase 2; E2F4: transcription factor E2F4; EZH2: enhancer of zeste homolog 2; EED: polycomb protein EED; EMT: epithelial mesenchymal transition; GADD45A: growth arrest and DNA inducible 45A; HOXB13: homeobox transcription factor B13; LINC00337: long intergenic non-protein coding RNA 00337; MALAT1: metastasis associated lung adenocarcinoma transcript 1; LINC00673: long intergenic non-protein coding RNA 00673; LINC01980: long intergenic non-protein coding RNA 1980; LINP1: lncRNA in non-homologous end joining pathway; MOA NR: mode of action not resolved; PRC2: polycomb repressive complex 2; SPRY4: sprouty homolog 4; SUV39H1: histone-lysine-N-methyltransferase; SUZ12: polycomb protein SUZ12; TG: tumor growth; TPX2: targeting protein for xlp2.

Figure 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 4.

Up-regulated long non-coding RNAs mediating modulation of additional targets with efficacy in preclinical esophageal squamous cell carcinoma related in vitro and in vivo models. Upward arrows indicate up-regulation, downward arrows indicate down-regulation. BDH2: 3-Hydroxybutyrate dehydrogenase type 2; CASC9: lncRNA cancer susceptibility 9; CASC15: lncRNA cancer susceptibility 15; EZH2: enhancer of zeste homolog 2; EZR: ezrin; EZR-AS1: ezrin-antisense 1 lncRNA; FTO: fat mass and obesity associated protein; LOC 100133669: long non-coding RNA 100133669; MOA-NR: mode of action not resolved; PDCD4: programmed cell death 4; PHB: prohibitin; PHBP1: prohibitin pseudogene 1; SIM2: single-minded 2; SMYD3: SET- and MTN-domain containing 3; TG: tumor growth; TIM50: mitochondrial inner membrane translocase subunit 50; TP73-AS1: TP73 antisense RNA1.

Figure 5.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 5.

Mode of action of selected down-regulated long non-coding RNAs. A) NKILA inhibits phosphorylation of IκB and subsequent translocation of transcription factors p50 and p65 into the nucleus. B) IRF1-AS1 stimulates transcription of interferon and interferon-stimulated genes by interaction with co-factors and enhances expression of its own gene. C) lncRNA SNHG5 promotes degradation of MTA2 and inhibits expression of the MTA2 gene. Corresponding lncRNAs are shown by red hair-pin structures. DHX9: DExH-box helicase 9; GASL1: growth arrest associated lncRNA; IκB: nuclear factor of κ light chain polypeptide gene enhancer in B cells inhibitor; IKKα,β: inhibitor of nuclear factor κB kinase subunit α or β; IRF1: interferon regulatory factor 1; IRF-AS1: interferon-regulatory factor 1 antisense RNA1; IKKα,β: IκB kinase α,β; ISGs: interferon-stimulated genes; ILF3: interleukin enhancer binding factor 3 (ILF3); MTA2: metastasis associated 2; NEMO: NFκB essential modulator; NKILA: NFκB interacting lncRNA; p50: NFκB1; p65: NFκB2; ub: ubiquitin; SNHG5: small nucleolar RNA host gene 5 lncRNA; ub: ubiquitinylation.

lncRNA GASL1 targets Wnt/β-catenin signaling. Growth arrest associated lncRNA1 (GASL1) (Figure 1) was down-regulated in ESCC cell lines, induced cell-cycle arrest, inhibited cell migration and invasion in vitro and TG in vivo (30). GASL1 inactivated WNT/β-catenin signaling by inhibition of dickkopf1 (DKK1), wingless-type MMTV integration site family, member 3a (WNT3A), β-catenin and inhibited transcription factor c-MYC (Figure 1). The molecular basis of these findings is not yet resolved. WNT signaling is frequently deregulated in cancer (31, 32). WNT3a and DKK1 are associated with poor prognosis in patients with ESCC (33, 34). Involvement of DKK1 in invasive growth of ESCC cells has been reported (35). Furthermore, DKK1 is involved in maintaining stem cell-like properties of ESCC cells (36). It has been shown independently that inhibition of Wnt/β-catenin signaling results in attenuation of growth of ESCC cells (37).

lncRNA ADAMTS9-AS2 inhibits Cadherin3. ADAM metallopeptidase with thrombospondin type1 motif 9 antisense RNA 2 (ADAMTS-AS2) has been shown to be expressed at low levels in ESCC patients. ADAMTS-AS2 inhibited proliferation, migration and invasion of ESCC cells via down-regulation of Cadherin 3 (CDH3) (38). Overexpression of ADAMTS-AS2 in ESCC cells inhibited TG in nude mice. Down-regulation of CDH3 by ADAMTS-AS2 was achieved by recruitment of DNA methyltransferases 1 and 3 (DNMT1/DNMT3) to the CHD3 gene as shown by RNA pull-down experiments (1) (Figure 1). CDH3 belongs to the cadherin superfamily of Ca-dependent cell-cell adhesion proteins composed of five extracellular cadherin repeats, a transmembrane region and a conserved cytoplasmic tail (39). CDH3 is involved in metastasis through activation of RHO GTPases (40). CDH3 is frequently over-expressed in breast cancer and CRC, which leads to enhancement of migration, invasion and tumor aggressiveness (41, 42). In ESCC, over-expression of CDH3 has been demonstrated (43).

lncRNA IRF1-AS activates interferon response. Downregulation of interferon-regulatory factor 1 antisense RNA (IRF1-AS) (Figure 1) predicted poor clinical outcome in ESCC patients (44). IRF1-AS inhibited proliferation and promoted apoptosis of KYSE30 and KYSE180 ESCC cells in vitro and in vivo in nude mice. Interestingly, IRF1-AS stimulated expression of its own gene by interacting with interleukin enhancer binding factor 3 (ILF3) and DExH-box helicase 9 (DHX9). Both are located in the nucleus, have RNA binding motifs and function as transcriptional co-activators (45, 46) (Figure 1 and Figure 5B). IRF1-AS activates interferon response in vitro and in vivo. IRF1 interacts with other transcription factors to stimulate or to repress specific genes in the nucleus and acts as a negative regulator of cell proliferation (47, 48). IRF1 binds to IFN specific response elements via an N-terminal helix-turn-helix DNA binding domain to induce the interferon response (49, 50).

lncRNA SNHG5 targets metastasis-associated 2 protein. Small nucleolar RNA host gene 5 (SNHG5) (Figure 1) has been shown to be down-regulated in ESCC tissues and cell lines and correlated with cancer progression and survival (51). Over-expression of SNHG5 inhibited proliferation, migration and invasion of ESCC cells in vitro and in vivo. SNHG5 reversed EMT and was shown to directly interact with metastasis-associated 2 (MTA2). SNHG5 down-regulated MTA2 at the transcriptional level and caused ubiquitin-mediated degradation of MTA2 (Figure 1 and Figure 5C). The latter is a regulator of nucleosome remodeling and histone deacetylation complex and also functions as a hub for cytoskeleton organization and transcription (52). The MTA family consists of three members, MTA1, MTA2 and MTA3 and expression of MTA2 correlates with aggressive phenotype and invasiveness of several types of tumors (53, 54). MTA2 has been shown to promote metastasis of ESCC (55).

lncRNA LINC00551 targets heat shock protein 27. Long intergenic non-protein coding RNA 00551(LINC 00551) (Figure 1) has been shown to be down-regulated in ESCC tissues and correlated with poor survival (56). LINC 00551 over-expression inhibited ESCC cell proliferation and invasion, whereas its knockdown promoted ESCC proliferation in vitro and in vivo. LINC 00551 was found to bind to heat shock protein 27 (HSP27) and decreased its phosphorylation. Heat shock proteins are regulators of proliferation, survival and apoptosis of cancer cells by their involvement in protein folding and maturation protecting them from degradation (57). HSP27 activates WNT/β-catenin signaling, the hippo pathway and oncogenic and metastatic pathways via transforming growth factor β (TGF-β)/SMAD signaling (58). In ESCC, expression of HSP27 correlates with lymph node metastasis and regulates pyruvate kinase isoenzyme M2 to promote ESCC progression (59). Several heat shock protein inhibitors for treatment of cancer have been identified, however, they showed limited efficacy in clinical studies due to toxicity issues and activation of heat shock factor-1 (HSF-1) leading to protective heat-shock responses (60, 61).

lncRNA ZNF750 targets Laminin γ2. lncRNA zinc finger 750 (ZNF750) (Figure 1) has been shown to be underexpressed in ESCC tissues in comparison to corresponding normal tissues (62). ZNF750 inhibited migration of ESCC, induced epidermal differentiation of ESCC cells and attenuated growth of UMSCC1 ESCC derived xenografts in immuno-compromised mice. ZNF750 mediated transcription of terminal differentiation inducing non-coding RNA (TINCR), a potential biomarker and therapeutic target for cancer (62, 63). In addition, ZNF750 repressed laminin γ2 (LAMC2) at the transcriptional level (62). Laminins are secreted components of the extracellular matrix, which are composed of three non-identical chains (α, β and γ). Laminins regulate cell adhesion, differentiation, migration and metastases (64). Over-expression of LAMC2 predicts poor prognosis in colorectal cancer (CRC) patients and promotes proliferation, migration and invasion (65). Also, in ESCC, expression of LAMC2 is associated with recurrence and poor prognosis (66).

Up-regulated lncRNAs and lncRNAs Activating Transcription Factors

Linc 02042 targets c-MYC. Long intergenic non-protein coding RNA 2042 (LINC 02042) (Figure 2 and Figure 6A) has been shown to be up-regulated in ESCC (67). It inhibited proliferation, migration and invasion of KYSE30 and KYSE150 ESCC cells in vitro and TG of KYSE30 cells in vivo in nude mice. LINC 02042 stabilized c-MYC mRNA by binding to LINC 02402-Y box binding protein 1 (YBX1) complex of the 3’-untranslated region (UTR) of c-MYC (67). A positive feedback loop was implemented by transactivation of LINC 02042 by c-MYC (67). YBX1 is a multi-functional protein that can modulate RNA stability by binding to AU-rich elements on the 3’-UTR of mRNAs (68, 69). c-MYC is a nuclear transcription factor, which is frequently deregulated in cancer mediating proliferation, invasion, metastasis, cell growth, ribosome biogenesis and metabolism of cancer cells (70-74). However, due to its ubiquitous expression and its disordered structure, druggability of c-MYC is still unclear.

Figure 6.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 6.

Mode of action of selected up-regulated long non-coding RNAs. A) LINC 02042 and lnc BAALC-AS1 stabilize c-MYC mRNA. LINC 02042 stabilizes c-MYC mRNA by recruiting YBX-1 to its 3’-UTR. Lnc BBALB-AS1 releases G3P2 from the 3’-UTR of c-MYC mRNA through direct binding of G3P2 resulting in stabilization of c-MYC mRNA. B) Lin00152 binds to the PCR2 complex and inhibits its interaction with the promoter region of the ZEB1 gene resulting in down-regulation of H3K27me3 and up-regulation of expression of ZEB1 mRNA. C) lncRNA PANDA releases NF-YA from the promoters of target genes and facilitates transcription by interaction with SAFA of the promoter region of selected genes. D) lncRNA CCAT1 recruits PRC2 and SUV39H1 to the SPRY-4 gene and sponges miR-7. Up-regulation of H3K27me3 and H3K9me3 leads to decreased expression of the SPRY-4 gene and sponging of miR-7 to increase of expression of HOXB13 respectively. E) Lnc00673 recruits EZH2 to the promoter of the CDK2NC gene. Increase in H3K27me3 decreases transcription of the CDK2NC gene. F) CASC15 inhibits transcription of SIM2 and decreases the stability of its mRNA by interaction with FTO in the 3’-UTR of SIM2. G) An antisense lncRNA leads to increased expression of its gene. Ezrin-AS1 recruits SYMD3 to the promoter region of the ezrin gene resulting in up-regulation of H3K4me3 and increases transcription of the ezrin gene. CCAT1: Colon cancer associated transcript1 lncRNA; CASC15: cancer susceptibility candidate 15 lncRNA; CDKN2C: cyclin-dependent kinase 4 inhibitor C; EZR-AS1: ezrin-antisense 1; EZH2: enhancer of zeste repressive complex 2 subunit; FTO: fat mass and obesity associated; HOXB13: homeobox transcription factor B13; Lin00152: long-intergenic non-coding RNA 00152; LINC 02042: long intergenic non-protein coding RNA 02042; Inc BAALC-AS1: Inc BAALC antisense RNA1; lncRNA00673: long intergenic non-protein encoding RNA00673; miR-7: microRNA 7; NF-YA: nuclear transcription factor, subunit α; PANDA: lncRNA p21-associated nuclear RNA DNA damage activated; PRC2: polycomb repressive complex 2; SAFA: scaffold attachment factor A; SIM2: single-minded 2; SUV39H1: histone methyltransferase SUV39H1; SYMD3: SET and MYND domain containing protein 3; SPRY-4: sprouty homolg 4; UTR: untranslated region; YBX1: Y-box binding protein 1; ZEB1: zinc finger E-box binding homeobox 1.

BAALC-AS1 targets c-MYC. lncRNA BAALC antisense RNA 1 (BAALC-AS1) (Figure 2 and Figure 6A) has been shown to be up-regulated in ESCC and correlated with poor prognosis (75). It promoted proliferation, migration, colony formation and viability of KYSE 450 and -510 ESCC cells and TG of their xenografts in nude mice. These effects were found to be due to the stabilization of c-MYC. BAALC-AS1 released RAS GAPSH3 domain-binding protein 2 (G3BP2) from c-MYC mRNA by direct binding and thereby inhibited the degradation of c-MYC RNA 3’-UTR by G3BP2. The latter has RNA binding sites and affects mRNA stability of c-MYC (76, 77). A positive forward loop was implemented by stimulation of BAALC-AS1 by c-MYC (75). In ESCC, expression of G3BP2 is related to lymph node metastasis and prognosis (78).

Linc 00152 up-regulates zinc finger e-box binding homeobox 1. Long intergenic non-coding RNA (LINC 00152) (Figure 2 and Figure 6B) has been shown to be highly expressed in ESCC tissues and enhanced oxaliplatin resistance of ESCC cells (79). Down-regulation of LINC 00152 inhibited EMT and resistance to oxaliplatin in KYSE150 and TE-1 ESCC cells. In nude mice, LINC 00152 promoted TG of KYSE 150 xenografts after subcutaneous implantation. These effects were mediated by up-regulation of transcription factor zinc finger e-box binding homeobox 1 (ZEB1). The latter has been shown to be involved in invasion and metastasis of ESCC (80). LINC 00152 released enhancer of zeste homolog 2 (EZH2) from the ZEB1 gene by binding to the polycomb repressive complex 2 (PRC2), thus reducing trimethylation of lys 27 in histone 3 and promoting expression of ZEB1. EZH2 is a histone-lysine N-methyltransferase which facilitates heterochromatin formation and promotes tumorigenesis (81). EZH2 inhibitor Tazemetostat has been recently approved for the indication epithelioid sarcoma (82). EZH2 expression correlates with aggressiveness and prognosis of ESCC (83).

lncRNA PANDA interacts with nuclear transcription factor Y, subunit α and nuclear matrix protein scaffold attachment factor A. High expression of p21-associated nuclear RNA DNA damage activated (PANDA) (Figure 2 and Figure 6C) has been shown to be associated with advanced clinical stage and shorter overall survival in ESCC patients (84). Down-regulation of PANDA suppressed ESCC cell proliferation and colony formation, arrested G1/S transition in vitro and development of tumors in vivo in nude mice. Depletion of PANDA reduced expression levels of E2F1, cyclins D1, D2 and E, and BCL2. The reduction in the expression of these cell-cycle regulators and anti-apoptotic genes was due to binding of nuclear transcription factor Y, subunit α (NF-YA) to PANDA. NFYA consists of three subunits, regulatory subunit NF-YA and subunits NF-YB and NF-YC, which bind to CCAAT motifs on DNA. NF-YA drives a plethora of cell-cycle regulatory genes and acts as a key player in the regulation of proliferation of cancer cells (85, 86). In addition, PANDA bound to nuclear matrix protein scaffold attachment factor A (SAFA) to switch the tumor proliferation program through CyclinD1/2-Cyclin E1 and BCL2 pathways. SAFA can bind to DNA, RNA and noncoding RNA such as PANDA (87, 88).

lncRNAs Targeting Cell-cycle and Signaling Related Components

lncRNA CCAT1 targets sprouty homolog 4 and homeobox transcription factor B13. lncRNA colon cancer associated transcript 1 (CCAT1) (Figure 3 and Figure 6D) has been shown to be up-regulated in ESCC tissues and correlated with poor prognosis (89). Knockdown of CCAT1 in Eca-109 and TE-1 ESCC cells inhibited cell proliferation and migration in vitro. CCAT1 also regulated proliferation and migration of Eca-109 xenografts in nude mice. From a mechanistic point of view, CCAT leads to down-regulation of sprouty homolog 4 (SPRY4) and up-regulation of homeobox transcription factor HOXB13 (90, 91). SPRY4 is an inhibitor of transmembrane tyrosine kinase receptor transduced mitogen-activated protein kinase (MAPK) signaling (90). The other target, HOXB13, acts as an oncogenic transcription factor (91). Inhibition of expression of SPRY4 was achieved by recruitment of PRC2 and SUV39H1 by interaction with CCAT1 (89). PRC2 is a histone methyltransferase composed of catalytic subunit EZH2 and polycomb proteins SUZ12 and EED (92-94) resulting in tri-methylating histone H3 Lys 27, which is a repressor of transcription. SUV39H1 also acts as a histone methyltransferase and a transcriptional repressor by histone H3 lysine 9 trimethylation (95). These interactions occurred in the nucleus. In addition, HOXB13 was upregulated by CCAT1 due to sponging of miR-7 in the cytoplasm which facilitates growth and migration of ESCC cells (96).

lncRNA MALAT1 targets the ataxia telangiectasia mutated-checkpoint kinase 2 pathway. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) (Figure 3) has been shown to be up-regulated in advanced ESCC tissues (97). Knockdown of MALAT1 decreased growth and invasion of EC109 and EC9706 ESCC cells in vitro and growth of xenografts in vivo after subcutaneous implantation into nude mice. Knockdown of MALAT1 induced cell-cycle arrest by activation of the Ser-Thr kinase ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (CHK2) pathway. Conversely, high expression of MALAT1 promoted ESCC proliferation by dephosphorylation and inhibition of the ATM/CHK2 pathway. ATM is a mediator of DNA repair, is recruited to DNA double-strand breaks and subsequently phosphorylates CHK2 (98-100). The latter plays an important role in cancer development and cell checkpoint control of cancer (101, 102). Mechanistic details of inhibition of ATM/CHK2 by MALAT are not yet resolved.

lncRNA LINC01980 up-regulates growth arrest and DNA-inducible 45A. LINCO1980 has been shown to be up-regulated in ESCC and correlated with poor prognosis (103). It promoted ESCC growth in vitro and in vivo, accelerated cell-cycle progression and prevented apoptosis. Growth arrest and DNA-inducible 45A (GADD45A) was identified as a possible target of LINCO1980 based on micro-array analysis. GADD45A promoted ESCC growth and LINC01980 up-regulated GADD45A. GADD family of proteins consist of three 18 Kd members, which are localized in the nucleus and the cytoplasm (104). Each of the GADD45 gene products has both TS and tumor promoting functions dependent on the cell type, tissue and transforming event (105, 106). GADD45A can induce cell-cycle arrest, apoptosis and DNA repair; however, tumor-promoting activities of GADD45A have also been reported (105, 106). GADD45A has been shown to be over-expressed in CRC and pancreatic cancer (107, 108). The molecular mechanisms underlying up-regulation of GADD45A by LINCO1980 have not been resolved. GADD45A does not seem to be a high priority target for the treatment of ESCC based on the limited data presently available.

lncRNA LINP1 induces epithelial-mesenchymal transition. High expression of intergenic lncRNA in the non-homologous end joining pathway 1 (LINP1) correlated with poor prognosis in patients with ESCC (109). Knock-down of LINP1 promoted cell-cycle arrest at G2/M and apoptosis, and inhibited EMT in EC907 ESCCs in vitro. In vivo, knockdown of LINP1 mediated inhibition of TG of EC907 xenografts in nude mice. Suppression of EMT was mediated by down-regulation of N-cadherin, vimentin, snail and slug. The mechanistic details underlying these effects were not resolved. EMT is a cell biological program with a series of phenotypic states and is involved in invasiveness and metastasis. Also, intermediate cell types between the epithelial and mesenchymal cell state play a role in this process (110-112). In breast cancer, it has been shown that LINP1 acts as an oncogene (113).

lncRNA LINC00673 down-regulates cyclin-dependent kinase 2 inhibitor C. Up-regulation of long intergenic non-protein coding RNA 00673 (LINC00673) (Figure 3 and Figure 6E) correlated with poor prognosis in ESCC patients (114). In KYSE30 and KYSE510 ESCC cells, knockdown of LINC00673 inhibited proliferation and cell-cycle arrest at the G1/S checkpoint in vitro and reduced TG in vivo in nude mice. It was found that LINC00673 inhibited expression of cyclin-dependent kinase 2 inhibitor C (CDKN2C) through recruitment of EZH2 to the promoter region of CDKN2C generating H3K27me3, which inhibited gene expression (114). CDKN2C interacts with cyclin-dependent kinases 4 and 6 (CDK4/6) and prevents their activation (115, 116). Three CDK4/6 inhibitors have been approved for treatment of hormone receptor+/HER2+ breast cancer: palbociclib, ribociclib and abemaciclib (117, 118). Ongoing clinical studies in other types of solid tumors including ESCC have been reported (119). Limited activity has been shown in palbociclib treated patients with advanced esophageal or gastric cancer in Phase II clinical studies (120).

lncRNA LINC00337 up-regulates targeting protein for xlp2. Long intergenic non-protein coding RNA 00337 (LINC00337) (Figure 3) has been shown to be up-regulated in ESCC and corresponding cell lines (121). Down-regulation of LINC00337 suppressed autophagy and enhanced chemosensitivity to cisplatin. In nude mice, down-regulation of LINC00337 led to aggravated growth of Eca109 ESCC xenografts after subcutaneous implantation (121). LINC00337 interacted with transcription factor E2F4, which mediated transcription of the targeting protein for xlp2 (TPX2) (121). E2F4 is involved in controlling the cell-cycle (122). TPX2 functions as a spindle and microtubule assembly factor and regulates cell growth during M-phase and its expression correlates with progression of tumors (123, 124). TPX2 recruits and activates aurora kinase A (AURKA) (125). Several AURKA inhibitors are under clinical investigation (126). In ESCC, TPX2 mediates proliferation, invasion and metastasis and is associated with poor clinical outcome (127-129).

lncRNAs Targeting Further Components

CASC15 targets single-minded 2. lncRNA cancer susceptibility candidate 15 (CASC15) (Figure 4 and Figure 6F) has been shown to be increased in ESSC tissues (130). CASC15 knockdown decreased proliferation and promoted apoptosis in Eca109 and KYSE450 ESCC cells in vitro. Silencing of CASC15 inhibited growth of KYSE450 xenografts in nude mice. CASC15 attenuated expression of transcription factor single-minded 2 (SIM2) and decreased stability of SIM2 mRNA via fat mass and obesity associated protein (FTO). It has been shown that SIM2 can suppress EMT in ESCC (131). FTO is a α-keto glutamate-dependent dioxygenase, which mediates oxidative demethylation of different RNA species affecting their splicing and stability (132, 133). FTO regulates acute myeloid leukemia (AML) by targeting 3’UTR of ankyrin repeat and SOCS box containing 2 and retinoic acid α transcripts (134). In ESSC, FTO has been shown to promote proliferation and migration through up-regulation of MMP13 (135).

Lnc TP73-AS1 up-regulates type2-hydroxybutyrate dehydrogenase. TP73-AS1 has been shown to be up-regulated in ESCC and its knockout inhibited proliferation and induction of apoptosis in EC9706 and KYSE30 ESCC cells in vitro (136) (Figure 4). siRNA directed against TP73-AS1 attenuated proliferation of EC9706 and KYSE30 cells in vivo. Knockdown of TP73-AS1 inhibited cytosolic 3-hydroxybutyrate dehydrogenase type 2 (BDH2). Knockdown of the latter attenuated proliferation and induced apoptosis of EC9706 and KYSE30 cells. BDH2 over-expression partially rescued proliferation and suppressed apoptosis in lncRNA TP73-AS1 knockdown cells. BDH2 plays a role in utilization of ketone bodies in mitochondria and the tricarboxylic acid cycle (137). Furthermore, BDH2 functions as an anti-apoptotic factor through survivin (138). However, the function of BDH2 seems to be context-dependent, because it functions as a TS in gastric cancer and hepatocellular carcinoma (139, 140).

lncRNA Casc9 down-regulates programmed cell death 4. Lnc RNA cancer susceptibility 9 (CASC9) up-regulation predicted poor prognosis in ESCC (141) (Figure 4). Knockdown of Casc9 in KYSE150 and KYSE450 ESCC cells inhibited cell growth in vitro and in vivo. CASC9 promoted ESCC cell growth by negatively regulating programmed cell death 4 (PDCD4). CASC9 recruited EZH2 to the promoter of PDCD4 and increases H3K27me3, which inhibits transcription (141). PDCD4 acts as a TS, is up-regulated after initiation of apoptosis and inhibits translation (142-144). In ESCC cells, PDCD4 induces apoptosis, suppresses proliferation and inhibits AKT (145, 146).

lncRNA LOC100133669 targets mitochondrial inner membrane translocase subunit 50. Lnc RNA100133669 (LOC100133669) (Figure 4) has been shown to be up-regulated in ESCC tissues and correlated with poor prognosis (147). In KYSE150 and KYSE510 ESCC cell lines, LOC100133669 promoted proliferation and accelerated entry of cells from G2/M phase to G0/G1 phase. In vivo, TG is reduced in KYSE150 cells with knockdown of LOC100133669 after subcutaneous implantation into nude mice. LOC100133669 interacts with mitochondrial inner membrane translocase subunit 50 (TIM50) and inhibits its degradation by interfering with ubiquitinylation. TIM50 functions as a subunit of the TIM23 complex which is essential for directing preproteins into mitochondria (148-150). TIM50 also is involved in energy production, metabolism, cell death, cell signaling and oxidative stress (151). TIM50 also has been shown to mediate NSCLC proliferation and invasion via the extracellular regulated kinase (ERK) pathway (152).

lncRNA EZR-AS1 up-regulates ezrin. EZR-AS1 up-regulated ezrin (EZR) expression in KYSE150 ESCCs to promote migration in vitro (153) (Figure 4 and Figure 6G). In vivo, silencing of EZR-AS1 reduced TG of KYSE150 xenografts in nude mice. Lnc RNA EZR-AS1 formed a complex with RNA Pol II and recruited H3 lysine 4 (H3K4) methyltransferase SET- and MTN-domain containing 3 (SMYD3) to a binding site present in a GC region downstream of the EZR promoter resulting in local enrichment of H3K4me3 leading to enhanced expression of EZR (153). Ezrin/radixin/moesin (ERM) proteins function as general cross-linkers between plasma membrane proteins and the cytoskeleton and play a role in functional expression of membrane proteins on the cell surface (154). EZR mediates invasion and metastases in the process of tumorigenesis (155). In ESCC, EZR promotes growth and invasiveness and predicts a poor prognosis (156, 157). SMYD3 methylates various histone and non-histone targets and plays an oncogenic role (158). In ESSC patients, expression of SYMD3 is negatively correlated with survival time (159).

lncRNA PHBP1 increases expression of prohibitin. Prohibitin pseudogene PHBP1 (Figure 4) has been shown to be overexpressed in human ESCC tissues (160). Knockdown of PHBP1 inhibited proliferation and colony formation in vitro in Eca9706 and TE-1 ESCC cells. In nude mice, TG of Eca9706 and TE-1 xenografts after knockdown of PHBP1 was found. mRNA stability of prohibitin (PHB) was increased by PHBP1 through PHBP1/PHB RNA-RNA duplex formation. This indicates that the mRNA of a pseudogene, a natural antisense transcript, can stabilize the mRNA of its cognate gene and lead to increased expression of its gene product. PHB is a protein of the inner mitochondrial membrane, which is involved in cancer cell proliferation, apoptosis and metastasis (161, 162). PHB can modulate transcription by interacting with transcription factors including nuclear receptors directly or indirectly (163, 164). In ESCC, increased expression of PHB correlates with poor prognosis (165). In pancreatic cancer, PHB has been identified as a prognostic marker for worse prognosis (166). However, proapoptotic functions of prohibitin have also been reported, indicating context-dependent function (162).

Technical Issues

We have identified 7 down- and 16 up-regulated lncRNAs showing efficacy in ESCC-related preclinical in vitro and in vivo models. Down-regulated lncRNAs can be reconstituted by expression of the corresponding lncRNAs with plasmid or retroviral vectors (167). Up-regulation of the corresponding targets with small molecules is limited by issues of specificity.

In case of up-regulated lncRNAs, inhibition with siRNA and shRNA (both of them double-stranded) or antisense oligonucleotides (ASO) (single-stranded) are also options (168). siRNA or shRNA delivered into cells initiate degradation of complementary RNAs (169). Binding of ASO to their targets induces RNAseH-dependent endonucleolytic cleavage of target RNA (170). Their therapeutic applications have been optimized by introducing chemical modifications leading to phosphothioates, generation of gapmers, locked nucleic acids, morpholino oligonucleotides and peptide nucleic acids (168). Also, modulation of lncRNAs by clustered regularly interspersed short palindromic sequences-crispr associated proteins (CRISPR-CAS) based intervention is a future option (168). lncRNAs fold into complex secondary and tertiary structures and interact with DNA, RNA and proteins (171, 172). It remains to be seen whether some of these interactions can be targeted with small molecules. Proof-of-concept experiments have shown that a stabilizing triple helix in MALAT-1 can be targeted with small molecules (173).

However, major hurdles for the approaches described above have been identified. These include immunogenicity of the identified agents, specificity and delivery issues, which are not discussed in detail in this review (174). Delivery has been improved by conjugation of lncRNAs to antibodies, cellpenetrating peptides and metal nanoparticles (174).

Thus far, 11 RNA therapeutics that down-regulate genes or interfere with pre-mRNA splicing have been approved by the Food and Drug Administration (FDA) or European Medicines Agency (EMA) (174). None of them has been used in the treatment of patients with cancer. However, four cancer-related approaches are in Phase II/III clinical studies such as an siRNA targeting G12D mutated KRAS and three ASOs targeting growth factor receptor-bound protein 2 (GRB2), signal transducer and activator of transcription 3 (STAT3) and heat shock protein 27 (HSP27) (174).

Conclusion

Down-regulated lncRNAs NKILA, GASL1, ADAMTS9-AS2, IRF-AS1, SNHG5, LINC00551, and ZNF750 are candidates for reconstitution therapy. Inhibition of signaling pathways such as NFκB (IκBα), WNT and IRF1, HSP27, DNMT1/3, MTA2 and CDH3 emerge as further options to be validated in more detail.

LINC02042, BAALC-AS1, LINC00152, and PANDA are up-regulated and target transcription factors such as c-MYC, NFYA, and SAFA. Due to issues of druggability, the targeting of transcription factors is problematic (175-177) but recent developments in the field of proteolysis targeting chimera (PROTACS) might lead to breakthroughs in this field. PROTACS consist of two covalently linked modules, one binding to the target protein, the other one recruiting ubiquitin ligase mediating intracellular proteolysis of the target protein (178-181).

Up-regulated lncRNAs CCAT1, MALAT1, LINC01980, LINP1, LINC00673, and LINC00337 target signaling and cell-cycle related entities. Up-regulation of CDKN2C by inhibition of EZH2 and up-regulation of SPRY-4 by inhibition of PRC2 and SUV39H1 emerge as therapeutic options.

CASC15, TP73-AS1, and CASC9 target further components, not covered by the previously discussed categories. Inhibition of the metabolic enzyme BDH2 (182) by small molecules might be an interesting option, but validation of this target in more detail is necessary. Inhibition of EZH2 to down-regulate PDCD4 might emerge as another approach for treatment of ESCC. Inhibition of TIM50 and Ezrin might be limited by specificity and druggability issues. The role of prohibitin in ESCC merits further investigation.

It is unclear, whether interactions of lncRNAs with corresponding proteins, DNA or RNA can be targeted with small molecules. Inhibition of up-regulated lncRNAs with siRNA or ASO presently seems to be the most promising approach as a new treatment modality for the treatment of ESCC. In vivo studies in patient-derived xenografts (PDX) of ESCC would increase the translational impact of the approaches described above.

Footnotes

  • Authors’ Contributions

    The Authors contributed equally to all aspects of the paper.

  • Conflicts of Interest

    FB is and UHW was an employee of Roche.

  • Received March 17, 2022.
  • Revision received April 7, 2022.
  • Accepted April 11, 2022.
  • Copyright © 2022, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

References

  1. ↵
    1. Bray F,
    2. Ferlay J,
    3. Soerjomataram I,
    4. Siegel RL,
    5. Torre LA and
    6. Jemal A
    : Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6): 394-424, 2018. PMID: 30207593. DOI: 10.3322/caac.21492
    OpenUrlCrossRefPubMed
  2. ↵
    1. Smyth EC,
    2. Lagergren J,
    3. Fitzgerald RC,
    4. Lordick F,
    5. Shah MA,
    6. Lagergren P and
    7. Cunningham D
    : Oesophageal cancer. Nat Rev Dis Primers 3: 17048, 2017. PMID: 28748917. DOI: 10.1038/nrdp.2017.48
    OpenUrlCrossRefPubMed
  3. ↵
    1. Yang YM,
    2. Hong P,
    3. Xu WW,
    4. He QY and
    5. Li B
    : Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther 5(1): 229, 2020. PMID: 33028804. DOI: 10.1038/s41392-020-00323-3
    OpenUrlCrossRefPubMed
    1. Kakeji Y,
    2. Oshikiri T,
    3. Takiguchi G,
    4. Kanaji S,
    5. Matsuda T,
    6. Nakamura T and
    7. Suzuki S
    : Multimodality approaches to control esophageal cancer: development of chemoradiotherapy, chemotherapy, and immunotherapy. Esophagus 18(1): 25-32, 2021. PMID: 32964312. DOI: 10.1007/s10388-020-00782-1
    OpenUrlCrossRefPubMed
  4. ↵
    1. Peng C and
    2. Cohen DJ
    : Advances in the pharmacotherapeutic management of esophageal squamous cell carcinoma. Expert Opin Pharmacother 22(1): 93-107, 2021. PMID: 33034212. DOI: 10.1080/14656566.2020.1813278
    OpenUrlCrossRefPubMed
  5. ↵
    1. Yang J,
    2. Liu X,
    3. Cao S,
    4. Dong X,
    5. Rao S and
    6. Cai K
    : Understanding esophageal cancer: the challenges and opportunities for the next decade. Front Oncol 10: 1727, 2020. PMID: 33014854. DOI: 10.3389/fonc.2020.01727
    OpenUrlCrossRefPubMed
    1. Harada K,
    2. Pool Pizzi M,
    3. Baba H,
    4. Shanbhag ND,
    5. Song S and
    6. Ajani JA
    : Cancer stem cells in esophageal cancer and response to therapy. Cancer 124(20): 3962-3964, 2018. PMID: 30368777. DOI: 10.1002/cncr.31697
    OpenUrlCrossRefPubMed
    1. Hao JJ,
    2. Lin DC,
    3. Dinh HQ,
    4. Mayakonda A,
    5. Jiang YY,
    6. Chang C,
    7. Jiang Y,
    8. Lu CC,
    9. Shi ZZ,
    10. Xu X,
    11. Zhang Y,
    12. Cai Y,
    13. Wang JW,
    14. Zhan QM,
    15. Wei WQ,
    16. Berman BP,
    17. Wang MR and
    18. Koeffler HP
    : Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat Genet 48(12): 1500-1507, 2016. PMID: 27749841. DOI: 10.1038/ng.3683
    OpenUrlCrossRefPubMed
  6. ↵
    1. Krug S and
    2. Michl P
    : Esophageal cancer: New insights into a heterogenous disease. Digestion 95(4): 253-261, 2017. PMID: 28384630. DOI: 10.1159/000464130
    OpenUrlCrossRefPubMed
  7. ↵
    1. Chi Y,
    2. Wang D,
    3. Wang J,
    4. Yu W and
    5. Yang J
    : Long non-coding RNA in the pathogenesis of cancers. Cells 8(9): 1015, 2019. PMID: 31480503. DOI: 10.3390/cells8091015
    OpenUrlCrossRefPubMed
  8. ↵
    1. Iyer MK,
    2. Niknafs YS,
    3. Malik R,
    4. Singhal U,
    5. Sahu A,
    6. Hosono Y,
    7. Barrette TR,
    8. Prensner JR,
    9. Evans JR,
    10. Zhao S,
    11. Poliakov A,
    12. Cao X,
    13. Dhanasekaran SM,
    14. Wu YM,
    15. Robinson DR,
    16. Beer DG,
    17. Feng FY,
    18. Iyer HK and
    19. Chinnaiyan AM
    : The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3): 199-208, 2015. PMID: 25599403. DOI: 10.1038/ng.3192
    OpenUrlCrossRefPubMed
  9. ↵
    1. Bhan A,
    2. Soleimani M and
    3. Mandal SS
    : Long noncoding RNA and cancer: a new paradigm. Cancer Res 77(15): 3965-3981, 2017. PMID: 28701486. DOI: 10.1158/0008-5472.CAN-16-2634
    OpenUrlAbstract/FREE Full Text
    1. Peng WX,
    2. Koirala P and
    3. Mo YY
    : LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41): 5661-5667, 2017. PMID: 28604750. DOI: 10.1038/onc.2017.184
    OpenUrlCrossRefPubMed
  10. ↵
    1. Weidle UH,
    2. Birzele F,
    3. Kollmorgen G and
    4. Rüger R
    : Long noncoding RNAs and their role in metastasis. Cancer Genomics Proteomics 14(3): 143-160, 2017. PMID: 28446530. DOI: 10.21873/cgp.20027
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Goodall GJ and
    2. Wickramasinghe VO
    : RNA in cancer. Nat Rev Cancer 21(1): 22-36, 2021. PMID: 33082563. DOI: 10.1038/s41568-020-00306-0
    OpenUrlCrossRefPubMed
    1. Statello L,
    2. Guo CJ,
    3. Chen LL and
    4. Huarte M
    : Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2): 96-118, 2021. PMID: 33353982. DOI: 10.1038/s41580-020-00315-9
    OpenUrlCrossRefPubMed
  12. ↵
    1. Yang G,
    2. Lu X and
    3. Yuan L
    : LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839(11): 1097-1109, 2014. PMID: 25159663. DOI: 10.1016/j.bbagrm.2014.08.012
    OpenUrlCrossRefPubMed
  13. ↵
    1. Schmitt AM and
    2. Chang HY
    : Long noncoding RNAs in cancer pathways. Cancer Cell 29(4): 452-463, 2016. PMID: 27070700. DOI: 10.1016/j.ccell.2016.03.010
    OpenUrlCrossRefPubMed
  14. ↵
    1. Ke S,
    2. Li RC,
    3. Meng FK and
    4. Fang MH
    : NKILA inhibits NF-κB signaling and suppresses tumor metastasis. Aging (Albany NY) 10(1): 56-71, 2018. PMID: 29348395. DOI: 10.18632/aging.101359
    OpenUrlCrossRefPubMed
  15. ↵
    1. Lu Z,
    2. Chen Z,
    3. Li Y,
    4. Wang J,
    5. Zhang Z,
    6. Che Y,
    7. Huang J,
    8. Sun S,
    9. Mao S,
    10. Lei Y,
    11. Gao Y and
    12. He J
    : TGF-β-induced NKILA inhibits ESCC cell migration and invasion through NF-κB/MMP14 signaling. J Mol Med (Berl) 96(3-4): 301-313, 2018. PMID: 29379981. DOI: 10.1007/s00109-018-1621-1
    OpenUrlCrossRefPubMed
  16. ↵
    1. Wu CC and
    2. Chen CJ
    : Esophageal carcinoma. N Engl J Med 372(15): 1472, 2015. PMID: 25853761. DOI: 10.1056/NEJMc1500692
    OpenUrlCrossRefPubMed
  17. ↵
    1. Zhang L,
    2. Jin S,
    3. Wei Y,
    4. Wang C,
    5. Zou H,
    6. Hu J,
    7. Jia W and
    8. Pang L
    : Prognostic significance of matrix metalloproteinase 14 in patients with cancer: a systematic review and meta-analysis. Clin Lab 66(5), 2020. PMID: 32390382. DOI: 10.7754/Clin.Lab.2019.190831
    OpenUrlCrossRefPubMed
  18. ↵
    1. Chen N,
    2. Zhang G,
    3. Fu J and
    4. Wu Q
    : Matrix metalloproteinase-14 (MMP-14) downregulation inhibits esophageal squamous cell carcinoma cell migration, invasion, and proliferation. Thorac Cancer 11(11): 3168-3174, 2020. PMID: 32930509. DOI: 10.1111/1759-7714.13636
    OpenUrlCrossRefPubMed
    1. Zhang Q,
    2. Lou L,
    3. Cai X,
    4. Hao Z,
    5. Nie S,
    6. Liu Y,
    7. Su L,
    8. Wu W,
    9. Shen H and
    10. Li Y
    : Clinical significance of AJUBA, YAP1, and MMP14 expression in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 11(12): 6018-6024, 2018. PMID: 31949690.
    OpenUrlPubMed
  19. ↵
    1. Knapinska AM and
    2. Fields GB
    : The expanding role of MT1-MMP in cancer progression. Pharmaceuticals (Basel) 12(2): 77, 2019. PMID: 31137480. DOI: 10.3390/ph12020077
    OpenUrlCrossRefPubMed
  20. ↵
    1. Hou J,
    2. Karin M and
    3. Sun B
    : Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 18(5): 261-279, 2021. PMID: 33469195. DOI: 10.1038/s41571-020-00459-9
    OpenUrlCrossRefPubMed
  21. ↵
    1. Karin M
    : Nuclear factor-kappaB in cancer development and progression. Nature 441(7092): 431-436, 2006. PMID: 16724054. DOI: 10.1038/nature04870
    OpenUrlCrossRefPubMed
  22. ↵
    1. Wang W,
    2. Nag SA and
    3. Zhang R
    : Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 22(2): 264-289, 2015. PMID: 25386819. DOI: 10.2174/0929867321666141106124315
    OpenUrlCrossRefPubMed
  23. ↵
    1. Li B,
    2. Li YY,
    3. Tsao SW and
    4. Cheung AL
    : Targeting NF-kappaB signaling pathway suppresses tumor growth, angiogenesis, and metastasis of human esophageal cancer. Mol Cancer Ther 8(9): 2635-2644, 2009. PMID: 19723887. DOI: 10.1158/1535-7163.MCT-09-0162
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Ren Y,
    2. Guo T,
    3. Xu J,
    4. Liu Y and
    5. Huang J
    : The novel target of esophageal squamous cell carcinoma: lncRNA GASL1 regulates cell migration, invasion and cell cycle stagnation by inactivating the Wnt3a/β-catenin signaling. Pathol Res Pract 217: 153289, 2021. PMID: 33248356. DOI: 10.1016/j.prp.2020.153289
    OpenUrlCrossRefPubMed
  25. ↵
    1. Zhan T,
    2. Rindtorff N and
    3. Boutros M
    : Wnt signaling in cancer. Oncogene 36(11): 1461-1473, 2017. PMID: 27617575. DOI: 10.1038/onc.2016.304
    OpenUrlCrossRefPubMed
  26. ↵
    1. Nusse R and
    2. Clevers H
    : Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6): 985-999, 2017. PMID: 28575679. DOI: 10.1016/j.cell.2017.05.016
    OpenUrlCrossRefPubMed
  27. ↵
    1. Oguma J,
    2. Ozawa S,
    3. Kazuno A,
    4. Nitta M,
    5. Ninomiya Y and
    6. Kajiwara H
    : Wnt3a expression is associated with poor prognosis of esophageal squamous cell carcinoma. Oncol Lett 15(3): 3100-3108, 2018. PMID: 29435043. DOI: 10.3892/ol.2017.7666
    OpenUrlCrossRefPubMed
  28. ↵
    1. Shinno N,
    2. Kimura H,
    3. Sada R,
    4. Takiguchi S,
    5. Mori M,
    6. Fumoto K,
    7. Doki Y and
    8. Kikuchi A
    : Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug. Oncogene 37(26): 3471-3484, 2018. PMID: 29563607. DOI: 10.1038/s41388-018-0179-2
    OpenUrlCrossRefPubMed
  29. ↵
    1. Li S,
    2. Qin X,
    3. Liu B,
    4. Sun L,
    5. Zhang X,
    6. Li Z,
    7. Shan B,
    8. You J and
    9. Zhou Q
    : Dickkopf-1 is involved in invasive growth of esophageal cancer cells. J Mol Histol 42(6): 491-498, 2011. PMID: 21909757. DOI: 10.1007/s10735-011-9347-1
    OpenUrlCrossRefPubMed
  30. ↵
    1. Lu Z,
    2. Zhou C,
    3. Hu J,
    4. Xiong L,
    5. Cong Z and
    6. Shen Y
    : DKK1 maintained cancer stem-like properties of esophageal carcinoma cells via ALDH1A1/SOX2 axis. Int J Clin Exp Pathol 10(9): 9489-9495, 2017. PMID: 31966823.
    OpenUrlPubMed
  31. ↵
    1. Wang Z,
    2. Hu Q,
    3. Chen H,
    4. Shi L,
    5. He M,
    6. Liu H,
    7. Li T,
    8. Lü M,
    9. Deng M and
    10. Luo G
    : Inhibition of growth of esophageal cancer by alantolactone via Wnt/β-catenin signaling. Anticancer Agents Med Chem 21(18): 2525-2535, 2021. PMID: 33438562. DOI: 10.2174/1871520621666210112124546
    OpenUrlCrossRefPubMed
  32. ↵
    1. Liu D,
    2. Wu K,
    3. Yang Y,
    4. Zhu D,
    5. Zhang C and
    6. Zhao S
    : Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog 59(1): 32-44, 2020. PMID: 31621118. DOI: 10.1002/mc.23126
    OpenUrlCrossRefPubMed
  33. ↵
    1. Vieira AF and
    2. Paredes J
    : P-cadherin and the journey to cancer metastasis. Mol Cancer 14: 178, 2015. PMID: 26438065. DOI: 10.1186/s12943-015-0448-4
    OpenUrlCrossRefPubMed
  34. ↵
    1. Kaszak I,
    2. Witkowska-Piłaszewicz O,
    3. Niewiadomska Z,
    4. Dworecka-Kaszak B,
    5. Ngosa Toka F and
    6. Jurka P
    : Role of cadherins in cancer-a review. Int J Mol Sci 21(20): 7624, 2020. PMID: 33076339. DOI: 10.3390/ijms21207624
    OpenUrlCrossRefPubMed
  35. ↵
    1. Paredes J,
    2. Correia AL,
    3. Ribeiro AS,
    4. Albergaria A,
    5. Milanezi F and
    6. Schmitt FC
    : P-cadherin expression in breast cancer: a review. Breast Cancer Res 9(5): 214, 2007. PMID: 18001487. DOI: 10.1186/bcr1774
    OpenUrlCrossRefPubMed
  36. ↵
    1. Kumara HMCS,
    2. Bellini GA,
    3. Caballero OL,
    4. Herath SAC,
    5. Su T,
    6. Ahmed A,
    7. Njoh L,
    8. Cekic V and
    9. Whelan RL
    : P-Cadherin (CDH3) is overexpressed in colorectal tumors and has potential as a serum marker for colorectal cancer monitoring. Oncoscience 4(9-10): 139-147, 2017. PMID: 29142905. DOI: 10.18632/oncoscience.370
    OpenUrlCrossRefPubMed
  37. ↵
    1. Sanders DS,
    2. Bruton R,
    3. Darnton SJ,
    4. Casson AG,
    5. Hanson I,
    6. Williams HK and
    7. Jankowski J
    : Sequential changes in cadherin-catenin expression associated with the progression and heterogeneity of primary oesophageal squamous carcinoma. Int J Cancer 79(6): 573-579, 1998. PMID: 9842964. DOI: 10.1002/(sici)1097-0215(19981218)79:6<573::aid-ijc4>3.0.co;2-h
    OpenUrlCrossRefPubMed
  38. ↵
    1. Huang J,
    2. Li J,
    3. Li Y,
    4. Lu Z,
    5. Che Y,
    6. Mao S,
    7. Lei Y,
    8. Zang R,
    9. Zheng S,
    10. Liu C,
    11. Wang X,
    12. Li N,
    13. Sun N and
    14. He J
    : Interferon-inducible lncRNA IRF1-AS represses esophageal squamous cell carcinoma by promoting interferon response. Cancer Lett 459: 86-99, 2019. PMID: 31173852. DOI: 10.1016/j.canlet.2019.05.038
    OpenUrlCrossRefPubMed
  39. ↵
    1. Castella S,
    2. Bernard R,
    3. Corno M,
    4. Fradin A and
    5. Larcher JC
    : Ilf3 and NF90 functions in RNA biology. Wiley Interdiscip Rev RNA 6(2): 243-256, 2015. PMID: 25327818. DOI: 10.1002/wrna.1270
    OpenUrlCrossRefPubMed
  40. ↵
    1. Lee T and
    2. Pelletier J
    : The biology of DHX9 and its potential as a therapeutic target. Oncotarget 7(27): 42716-42739, 2016. PMID: 27034008. DOI: 10.18632/oncotarget.8446
    OpenUrlCrossRefPubMed
  41. ↵
    1. Dou L,
    2. Liang HF,
    3. Geller DA,
    4. Chen YF and
    5. Chen XP
    : The regulation role of interferon regulatory factor-1 gene and clinical relevance. Hum Immunol 75(11): 1110-1114, 2014. PMID: 25312803. DOI: 10.1016/j.humimm.2014.09.015
    OpenUrlCrossRefPubMed
  42. ↵
    1. Romeo G,
    2. Fiorucci G,
    3. Chiantore MV,
    4. Percario ZA,
    5. Vannucchi S and
    6. Affabris E
    : IRF-1 as a negative regulator of cell proliferation. J Interferon Cytokine Res 22(1): 39-47, 2002. PMID: 11846974. DOI: 10.1089/107999002753452647
    OpenUrlCrossRefPubMed
  43. ↵
    1. Escalante CR,
    2. Yie J,
    3. Thanos D and
    4. Aggarwal AK
    : Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391(6662): 103-106, 1998. PMID: 9422515. DOI: 10.1038/34224
    OpenUrlCrossRefPubMed
  44. ↵
    1. Taniguchi T,
    2. Ogasawara K,
    3. Takaoka A and
    4. Tanaka N
    : IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19: 623-655, 2001. PMID: 11244049. DOI: 10.1146/annurev.immunol.19.1.623
    OpenUrlCrossRefPubMed
  45. ↵
    1. Wei S,
    2. Sun S,
    3. Zhou X,
    4. Zhang C,
    5. Li X,
    6. Dai S,
    7. Wang Y,
    8. Zhao L and
    9. Shan B
    : SNHG5 inhibits the progression of EMT through the ubiquitin-degradation of MTA2 in oesophageal cancer. Carcinogenesis 42(2): 315-326, 2021. PMID: 33095847. DOI: 10.1093/carcin/bgaa110
    OpenUrlCrossRefPubMed
  46. ↵
    1. Covington KR and
    2. Fuqua SA
    : Role of MTA2 in human cancer. Cancer Metastasis Rev 33(4): 921-928, 2014. PMID: 25394532. DOI: 10.1007/s10555-014-9518-0
    OpenUrlCrossRefPubMed
  47. ↵
    1. Kumar R and
    2. Wang RA
    : Structure, expression and functions of MTA genes. Gene 582(2): 112-121, 2016. PMID: 26869315. DOI: 10.1016/j.gene.2016.02.012
    OpenUrlCrossRefPubMed
  48. ↵
    1. Kaur E,
    2. Gupta S and
    3. Dutt S
    : Clinical implications of MTA proteins in human cancer. Cancer Metastasis Rev 33(4): 1017-1024, 2014. PMID: 25374266. DOI: 10.1007/s10555-014-9527-z
    OpenUrlCrossRefPubMed
  49. ↵
    1. Dai SL,
    2. Wei SS,
    3. Zhang C,
    4. Li XY,
    5. Liu YP,
    6. Ma M,
    7. Lv HL,
    8. Zhang Z,
    9. Zhao LM and
    10. Shan BE
    : MTA2 promotes the metastasis of esophageal squamous cell carcinoma via EIF4E-Twist feedback loop. Cancer Sci 112(3): 1060-1074, 2021. PMID: 33340431. DOI: 10.1111/cas.14778
    OpenUrlCrossRefPubMed
  50. ↵
    1. Peng X,
    2. Zhou Y,
    3. Chen Y,
    4. Tang L,
    5. Wang G,
    6. Jiang H,
    7. Wang X,
    8. Tao Y and
    9. Zhuang W
    : Reduced LINC00551 expression promotes proliferation and invasion of esophageal squamous cancer by increase in HSP27 phosphorylation. J Cell Physiol 236(2): 1418-1431, 2021. PMID: 32677057. DOI: 10.1002/jcp.29947
    OpenUrlCrossRefPubMed
  51. ↵
    1. Chatterjee S and
    2. Burns TF
    : Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18(9): 1978, 2017. PMID: 28914774. DOI: 10.3390/ijms18091978
    OpenUrlCrossRefPubMed
  52. ↵
    1. Zhang Y,
    2. Feng Z,
    3. Wang W,
    4. Dong J,
    5. Gong X,
    6. Pu H and
    7. Chen X
    : Expression of heat shock protein-27 (Hsp27) and P38MAPK in esophageal squamous cell carcinoma. Med Sci Monit 23: 5246-5253, 2017. PMID: 29099815. DOI: 10.12659/msm.904912
    OpenUrlCrossRefPubMed
  53. ↵
    1. Zhang X,
    2. Liu T,
    3. Zheng S,
    4. Liu Q,
    5. Shen T,
    6. Han X,
    7. Zhang Q,
    8. Yang L and
    9. Lu X
    : SUMOylation of HSP27 regulates PKM2 to promote esophageal squamous cell carcinoma progression. Oncol Rep 44(4): 1355-1364, 2020. PMID: 32945483. DOI: 10.3892/or.2020.7711
    OpenUrlCrossRefPubMed
  54. ↵
    1. Olotu F,
    2. Adeniji E,
    3. Agoni C,
    4. Bjij I,
    5. Khan S,
    6. Elrashedy A and
    7. Soliman M
    : An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opin Drug Discov 13(10): 903-918, 2018. PMID: 30207185. DOI: 10.1080/17460441.2018.1516035
    OpenUrlCrossRefPubMed
  55. ↵
    1. Schopf FH,
    2. Biebl MM and
    3. Buchner J
    : The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18(6): 345-360, 2017. PMID: 28429788. DOI: 10.1038/nrm.2017.20
    OpenUrlCrossRefPubMed
  56. ↵
    1. Hazawa M,
    2. Lin DC,
    3. Handral H,
    4. Xu L,
    5. Chen Y,
    6. Jiang YY,
    7. Mayakonda A,
    8. Ding LW,
    9. Meng X,
    10. Sharma A,
    11. Samuel S,
    12. Movahednia MM,
    13. Wong RW,
    14. Yang H,
    15. Tong C and
    16. Koeffler HP
    : ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma. Oncogene 36(16): 2243-2254, 2017. PMID: 27819679. DOI: 10.1038/onc.2016.377
    OpenUrlCrossRefPubMed
  57. ↵
    1. Sharma U,
    2. Barwal TS,
    3. Malhotra A,
    4. Pant N,
    5. Vivek,
    6. Dey D,
    7. Gautam A,
    8. Tuli HS,
    9. Vasquez KM and
    10. Jain A
    : Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sci 257: 118035, 2020. PMID: 32622950. DOI: 10.1016/j.lfs.2020.118035
    OpenUrlCrossRefPubMed
  58. ↵
    1. Marinkovich MP
    : Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7(5): 370-380, 2007. PMID: 17457303. DOI: 10.1038/nrc2089
    OpenUrlCrossRefPubMed
  59. ↵
    1. Huang D,
    2. Du C,
    3. Ji D,
    4. Xi J and
    5. Gu J
    : Overexpression of LAMC2 predicts poor prognosis in colorectal cancer patients and promotes cancer cell proliferation, migration, and invasion. Tumour Biol 39(6): 1010428317705849, 2017. PMID: 28653882. DOI: 10.1177/1010428317705849
    OpenUrlCrossRefPubMed
  60. ↵
    1. Yamamoto H,
    2. Itoh F,
    3. Iku S,
    4. Hosokawa M and
    5. Imai K
    : Expression of the gamma(2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Clin Cancer Res 7(4): 896-900, 2001. PMID: 11309339.
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Du J,
    2. Zhang G,
    3. Qiu H,
    4. Yu H and
    5. Yuan W
    : A novel positive feedback loop of linc02042 and c-Myc mediated by YBX1 promotes tumorigenesis and metastasis in esophageal squamous cell carcinoma. Cancer Cell Int 20: 75, 2020. PMID: 32161513. DOI: 10.1186/s12935-020-1154-x
    OpenUrlCrossRefPubMed
  62. ↵
    1. Lyabin DN,
    2. Eliseeva IA and
    3. Ovchinnikov LP
    : YB-1 protein: functions and regulation. Wiley Interdiscip Rev RNA 5(1): 95-110, 2014. PMID: 24217978. DOI: 10.1002/wrna.1200
    OpenUrlCrossRefPubMed
  63. ↵
    1. Eliseeva IA,
    2. Kim ER,
    3. Guryanov SG,
    4. Ovchinnikov LP and
    5. Lyabin DN
    : Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc) 76(13): 1402-1433, 2011. PMID: 22339596. DOI: 10.1134/S0006297911130049
    OpenUrlCrossRefPubMed
  64. ↵
    1. Schuhmacher M,
    2. Staege MS,
    3. Pajic A,
    4. Polack A,
    5. Weidle UH,
    6. Bornkamm GW,
    7. Eick D and
    8. Kohlhuber F
    : Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9(21): 1255-1258, 1999. PMID: 10556095. DOI: 10.1016/s0960-9822(99)80507-7
    OpenUrlCrossRefPubMed
    1. Schuhmacher M,
    2. Kohlhuber F,
    3. Hölzel M,
    4. Kaiser C,
    5. Burtscher H,
    6. Jarsch M,
    7. Bornkamm GW,
    8. Laux G,
    9. Polack A,
    10. Weidle UH and
    11. Eick D
    : The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res 29(2): 397-406, 2001. PMID: 11139609. DOI: 10.1093/nar/29.2.397
    OpenUrlCrossRefPubMed
    1. Schlosser I,
    2. Hölzel M,
    3. Mürnseer M,
    4. Burtscher H,
    5. Weidle UH and
    6. Eick D
    : A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res 31(21): 6148-6156, 2003. PMID: 14576301. DOI: 10.1093/nar/gkg794
    OpenUrlCrossRefPubMed
    1. Schlosser I,
    2. Hölzel M,
    3. Hoffmann R,
    4. Burtscher H,
    5. Kohlhuber F,
    6. Schuhmacher M,
    7. Chapman R,
    8. Weidle UH and
    9. Eick D
    : Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line. Oncogene 24(3): 520-524, 2005. PMID: 15516975. DOI: 10.1038/sj.onc.1208198
    OpenUrlCrossRefPubMed
  65. ↵
    1. Allen-Petersen BL and
    2. Sears RC
    : Mission possible: Advances in MYC therapeutic targeting in cancer. BioDrugs 33(5): 539-553, 2019. PMID: 31392631. DOI: 10.1007/s40259-019-00370-5
    OpenUrlCrossRefPubMed
  66. ↵
    1. Zhang H,
    2. Wang Y,
    3. Zhang W,
    4. Wu Q,
    5. Fan J and
    6. Zhan Q
    : BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma. Cancer Commun (Lond) 41(3): 240-257, 2021. PMID: 33476486. DOI: 10.1002/cac2.12127
    OpenUrlCrossRefPubMed
  67. ↵
    1. Gallouzi IE,
    2. Parker F,
    3. Chebli K,
    4. Maurier F,
    5. Labourier E,
    6. Barlat I,
    7. Capony JP,
    8. Tocque B and
    9. Tazi J
    : A novel phosphorylationdependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 18(7): 3956-3965, 1998. PMID: 9632780. DOI: 10.1128/MCB.18.7.3956
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Tourrière H,
    2. Gallouzi IE,
    3. Chebli K,
    4. Capony JP,
    5. Mouaikel J,
    6. van der Geer P and
    7. Tazi J
    : RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylationdependent localization. Mol Cell Biol 21(22): 7747-7760, 2001. PMID: 11604510. DOI: 10.1128/MCB.21.22.7747-7760.2001
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Zhang HZ,
    2. Liu JG,
    3. Wei YP,
    4. Wu C,
    5. Cao YK and
    6. Wang M
    : Expression of G3BP and RhoC in esophageal squamous carcinoma and their effect on prognosis. World J Gastroenterol 13(30): 4126-4130, 2007. PMID: 17696235. DOI: 10.3748/wjg.v13.i30.4126
    OpenUrlCrossRefPubMed
  70. ↵
    1. Zhang S,
    2. Liao W,
    3. Wu Q,
    4. Huang X,
    5. Pan Z,
    6. Chen W,
    7. Gu S,
    8. Huang Z,
    9. Wang Y,
    10. Tang X,
    11. Liang S,
    12. Zhang X,
    13. Chen Y,
    14. Chen S,
    15. Chen W,
    16. Jiang Y,
    17. Chen C and
    18. Qiu G
    : LINC00152 upregulates ZEB1 expression and enhances epithelial-mesenchymal transition and oxaliplatin resistance in esophageal cancer by interacting with EZH2. Cancer Cell Int 20(1): 569, 2020. PMID: 33292221. DOI: 10.1186/s12935-020-01620-1
    OpenUrlCrossRefPubMed
  71. ↵
    1. Ma J,
    2. Zhan Y,
    3. Xu Z,
    4. Li Y,
    5. Luo A,
    6. Ding F,
    7. Cao X,
    8. Chen H and
    9. Liu Z
    : ZEB1 induced miR-99b/let-7e/miR-125a cluster promotes invasion and metastasis in esophageal squamous cell carcinoma. Cancer Lett 398: 37-45, 2017. PMID: 28408353. DOI: 10.1016/j.canlet.2017.04.006
    OpenUrlCrossRefPubMed
  72. ↵
    1. Yamagishi M and
    2. Uchimaru K
    : Targeting EZH2 in cancer therapy. Curr Opin Oncol 29(5): 375-381, 2017. PMID: 28665819. DOI: 10.1097/CCO.0000000000000390
    OpenUrlCrossRefPubMed
  73. ↵
    1. Rothbart SB and
    2. Baylin SB
    : Epigenetic therapy for epithelioid sarcoma. Cell 181(2): 211, 2020. PMID: 32302562. DOI: 10.1016/j.cell.2020.03.042
    OpenUrlCrossRefPubMed
  74. ↵
    1. He LR,
    2. Liu MZ,
    3. Li BK,
    4. Jia WH,
    5. Zhang Y,
    6. Liao YJ,
    7. Chen YC,
    8. Zhang LJ,
    9. Guan XY,
    10. Zeng YX,
    11. Kung HF and
    12. Xie D
    : High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Int J Cancer 127(1): 138-147, 2010. PMID: 19904743. DOI: 10.1002/ijc.25031
    OpenUrlCrossRefPubMed
  75. ↵
    1. Shi W,
    2. Wang Q,
    3. Bian Y,
    4. Fan Y,
    5. Zhou Y,
    6. Feng T,
    7. Li Z and
    8. Cao X
    : Long noncoding RNA PANDA promotes esophageal squamous carcinoma cell progress by dissociating from NF-YA but interact with SAFA. Pathol Res Pract 215(10): 152604, 2019. PMID: 31495606. DOI: 10.1016/j.prp.2019.152604
    OpenUrlCrossRefPubMed
  76. ↵
    1. Gurtner A,
    2. Manni I and
    3. Piaggio G
    : NF-Y in cancer: Impact on cell transformation of a gene essential for proliferation. Biochim Biophys Acta Gene Regul Mech 1860(5): 604-616, 2017. PMID: 27939755. DOI: 10.1016/j.bbagrm.2016.12.005
    OpenUrlCrossRefPubMed
  77. ↵
    1. Dolfini D,
    2. Gatta R and
    3. Mantovani R
    : NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47(1): 29-49, 2012. PMID: 22050321. DOI: 10.3109/10409238.2011.628970
    OpenUrlCrossRefPubMed
  78. ↵
    1. Kiledjian M and
    2. Dreyfuss G
    : Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11(7): 2655-2664, 1992. PMID: 1628625.
    OpenUrlCrossRefPubMed
  79. ↵
    1. Puvvula PK,
    2. Desetty RD,
    3. Pineau P,
    4. Marchio A,
    5. Moon A,
    6. Dejean A and
    7. Bischof O
    : Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun 5: 5323, 2014. PMID: 25406515. DOI: 10.1038/ncomms6323
    OpenUrlCrossRefPubMed
  80. ↵
    1. Zhang E,
    2. Han L,
    3. Yin D,
    4. He X,
    5. Hong L,
    6. Si X,
    7. Qiu M,
    8. Xu T,
    9. De W,
    10. Xu L,
    11. Shu Y and
    12. Chen J
    : H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res 45(6): 3086-3101, 2017. PMID: 27956498. DOI: 10.1093/nar/gkw1247
    OpenUrlCrossRefPubMed
  81. ↵
    1. Leeksma OC,
    2. Van Achterberg TA,
    3. Tsumura Y,
    4. Toshima J,
    5. Eldering E,
    6. Kroes WG,
    7. Mellink C,
    8. Spaargaren M,
    9. Mizuno K,
    10. Pannekoek H and
    11. de Vries CJ
    : Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem 269(10): 2546-2556, 2002. PMID: 12027893. DOI: 10.1046/j.1432-1033.2002.02921.x
    OpenUrlCrossRefPubMed
  82. ↵
    1. Ouhtit A,
    2. Al-Kindi MN,
    3. Kumar PR,
    4. Gupta I,
    5. Shanmuganathan S and
    6. Tamimi Y
    : Hoxb13, a potential prognostic biomarker for prostate cancer. Front Biosci (Elite Ed) 8(1): 40-45, 2016. PMID: 26709644. DOI: 10.2741/E749
    OpenUrlCrossRefPubMed
  83. ↵
    1. Rinn JL,
    2. Kertesz M,
    3. Wang JK,
    4. Squazzo SL,
    5. Xu X,
    6. Brugmann SA,
    7. Goodnough LH,
    8. Helms JA,
    9. Farnham PJ,
    10. Segal E and
    11. Chang HY
    : Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7): 1311-1323, 2007. PMID: 17604720. DOI: 10.1016/j.cell.2007.05.022
    OpenUrlCrossRefPubMed
    1. Schumacher A,
    2. Lichtarge O,
    3. Schwartz S and
    4. Magnuson T
    : The murine Polycomb-group gene eed and its human orthologue: functional implications of evolutionary conservation. Genomics 54(1): 79-88, 1998. PMID: 9806832. DOI: 10.1006/geno.1998.5509
    OpenUrlCrossRefPubMed
  84. ↵
    1. Cao R,
    2. Wang L,
    3. Wang H,
    4. Xia L,
    5. Erdjument-Bromage H,
    6. Tempst P,
    7. Jones RS and
    8. Zhang Y
    : Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595): 1039-1043, 2002. PMID: 12351676. DOI: 10.1126/science.1076997
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Chiba T,
    2. Saito T,
    3. Yuki K,
    4. Zen Y,
    5. Koide S,
    6. Kanogawa N,
    7. Motoyama T,
    8. Ogasawara S,
    9. Suzuki E,
    10. Ooka Y,
    11. Tawada A,
    12. Otsuka M,
    13. Miyazaki M,
    14. Iwama A and
    15. Yokosuka O
    : Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int J Cancer 136(2): 289-298, 2015. PMID: 24844570. DOI: 10.1002/ijc.28985
    OpenUrlCrossRefPubMed
  86. ↵
    1. Li RC,
    2. Ke S,
    3. Meng FK,
    4. Lu J,
    5. Zou XJ,
    6. He ZG,
    7. Wang WF and
    8. Fang MH
    : CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis 9(8): 838, 2018. PMID: 30082829. DOI: 10.1038/s41419-018-0852-y
    OpenUrlCrossRefPubMed
  87. ↵
    1. Hu L,
    2. Wu Y,
    3. Tan D,
    4. Meng H,
    5. Wang K,
    6. Bai Y and
    7. Yang K
    : Upregulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 34: 7, 2015. PMID: 25613496. DOI: 10.1186/s13046-015-0123-z
    OpenUrlCrossRefPubMed
  88. ↵
    1. Smith J,
    2. Tho LM,
    3. Xu N and
    4. Gillespie DA
    : The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108: 73-112, 2010. PMID: 21034966. DOI: 10.1016/B978-0-12-380888-2.00003-0
    OpenUrlCrossRefPubMed
    1. Jin MH and
    2. Oh DY
    : ATM in DNA repair in cancer. Pharmacol Ther 203: 107391, 2019. PMID: 31299316. DOI: 10.1016/j.pharmthera.2019.07.002
    OpenUrlCrossRefPubMed
  89. ↵
    1. Smith HL,
    2. Southgate H,
    3. Tweddle DA and
    4. Curtin NJ
    : DNA damage checkpoint kinases in cancer. Expert Rev Mol Med 22: e2, 2020. PMID: 32508294. DOI: 10.1017/erm.2020.3
    OpenUrlCrossRefPubMed
  90. ↵
    1. Bartek J and
    2. Lukas J
    : Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5): 421-429, 2003. PMID: 12781359. DOI: 10.1016/s1535-6108(03)00110-7
    OpenUrlCrossRefPubMed
  91. ↵
    1. Perona R,
    2. Moncho-Amor V,
    3. Machado-Pinilla R,
    4. Belda-Iniesta C and
    5. Sánchez Pérez I
    : Role of CHK2 in cancer development. Clin Transl Oncol 10(9): 538-542, 2008. PMID: 18796370. DOI: 10.1007/s12094-008-0248-5
    OpenUrlCrossRefPubMed
  92. ↵
    1. Zhang S,
    2. Liang Y,
    3. Wu Y,
    4. Chen X,
    5. Wang K,
    6. Li J,
    7. Guan X,
    8. Xiong G,
    9. Yang K and
    10. Bai Y
    : Upregulation of a novel lncRNA LINC01980 promotes tumor growth of esophageal squamous cell carcinoma. Biochem Biophys Res Commun 513(1): 73-80, 2019. PMID: 30935686. DOI: 10.1016/j.bbrc.2019.03.012
    OpenUrlCrossRefPubMed
  93. ↵
    1. Fornace AJ Jr.,
    2. Alamo I Jr. and
    3. Hollander MC
    : DNA damageinducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85(23): 8800-8804, 1988. PMID: 3194391. DOI: 10.1073/pnas.85.23.8800
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Hoffman B and
    2. Liebermann DA
    : Gadd45 in modulation of solid tumors and leukemia. Adv Exp Med Biol 793: 21-33, 2013. PMID: 24104471. DOI: 10.1007/978-1-4614-8289-5_2
    OpenUrlCrossRefPubMed
  95. ↵
    1. Zhang L,
    2. Yang Z and
    3. Liu Y
    : GADD45 proteins: roles in cellular senescence and tumor development. Exp Biol Med (Maywood) 239(7): 773-778, 2014. PMID: 24872428. DOI: 10.1177/1535370214531879
    OpenUrlCrossRefPubMed
  96. ↵
    1. Garcia V,
    2. García JM,
    3. Peña C,
    4. Silva J,
    5. Domínguez G,
    6. Rodríguez R,
    7. Maximiano C,
    8. Espinosa R,
    9. España P and
    10. Bonilla F
    : The GADD45, ZBRK1 and BRCA1 pathway: quantitative analysis of mRNA expression in colon carcinomas. J Pathol 206(1): 92-99, 2005. PMID: 15772983. DOI: 10.1002/path.1751
    OpenUrlCrossRefPubMed
  97. ↵
    1. Schneider G,
    2. Weber A,
    3. Zechner U,
    4. Oswald F,
    5. Friess HM,
    6. Schmid RM and
    7. Liptay S
    : GADD45alpha is highly expressed in pancreatic ductal adenocarcinoma cells and required for tumor cell viability. Int J Cancer 118(10): 2405-2411, 2006. PMID: 16353139. DOI: 10.1002/ijc.21637
    OpenUrlCrossRefPubMed
  98. ↵
    1. Lu T,
    2. Ma K,
    3. Zhan C,
    4. Yang X,
    5. Shi Y,
    6. Jiang W,
    7. Wang H,
    8. Wang S,
    9. Wang Q and
    10. Tan L
    : Downregulation of long non-coding RNA LINP1 inhibits the malignant progression of esophageal squamous cell carcinoma. Ann Transl Med 8(11): 675, 2020. PMID: 32617295. DOI: 10.21037/atm-20-1009
    OpenUrlCrossRefPubMed
  99. ↵
    1. Dongre A and
    2. Weinberg RA
    : New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20(2): 69-84, 2019. PMID: 30459476. DOI: 10.1038/s41580-018-0080-4
    OpenUrlCrossRefPubMed
    1. Derynck R and
    2. Weinberg RA
    : EMT and cancer: more than meets the eye. Dev Cell 49(3): 313-316, 2019. PMID: 31063750. DOI: 10.1016/j.devcel.2019.04.026
    OpenUrlCrossRefPubMed
  100. ↵
    1. Zhang Y and
    2. Weinberg RA
    : Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 12(4): 361-373, 2018. PMID: 30043221. DOI: 10.1007/s11684-018-0656-6
    OpenUrlCrossRefPubMed
  101. ↵
    1. Liang Y,
    2. Li Y,
    3. Song X,
    4. Zhang N,
    5. Sang Y,
    6. Zhang H,
    7. Liu Y,
    8. Chen B,
    9. Zhao W,
    10. Wang L,
    11. Guo R,
    12. Yu Z and
    13. Yang Q
    : Long noncoding RNA LINP1 acts as an oncogene and promotes chemoresistance in breast cancer. Cancer Biol Ther 19(2): 120-131, 2018. PMID: 29293402. DOI: 10.1080/15384047.2017.1394543
    OpenUrlCrossRefPubMed
  102. ↵
    1. Zhou M,
    2. Mao Y,
    3. Yu S,
    4. Li Y,
    5. Yin R,
    6. Zhang Q,
    7. Lu T,
    8. Sun R,
    9. Lin S,
    10. Qian Y,
    11. Xu Y and
    12. Fan H
    : LINC00673 represses CDKN2C and promotes the proliferation of esophageal squamous cell carcinoma cells by EZH2-mediated H3K27 trimethylation. Front Oncol 10: 1546, 2020. PMID: 33014799. DOI: 10.3389/fonc.2020.01546
    OpenUrlCrossRefPubMed
  103. ↵
    1. Blais A,
    2. Labrie Y,
    3. Pouliot F,
    4. Lachance Y and
    5. Labrie C
    : Structure of the gene encoding the human cyclin-dependent kinase inhibitor p18 and mutational analysis in breast cancer. Biochem Biophys Res Commun 247(1): 146-153, 1998. PMID: 9636670. DOI: 10.1006/bbrc.1998.8497
    OpenUrlCrossRefPubMed
  104. ↵
    1. Guan KL,
    2. Jenkins CW,
    3. Li Y,
    4. Nichols MA,
    5. Wu X,
    6. O’Keefe CL,
    7. Matera AG and
    8. Xiong Y
    : Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev 8(24): 2939-2952, 1994. PMID: 8001816. DOI: 10.1101/gad.8.24.2939
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Wu Y,
    2. Zhang Y,
    3. Pi H and
    4. Sheng Y
    : Current therapeutic progress of CDK4/6 inhibitors in breast cancer. Cancer Manag Res 12: 3477-3487, 2020. PMID: 32523378. DOI: 10.2147/CMAR.S250632
    OpenUrlCrossRefPubMed
  106. ↵
    1. Piezzo M,
    2. Cocco S,
    3. Caputo R,
    4. Cianniello D,
    5. Gioia GD,
    6. Lauro VD,
    7. Fusco G,
    8. Martinelli C,
    9. Nuzzo F,
    10. Pensabene M and
    11. De Laurentiis M
    : Targeting cell cycle in breast cancer: CDK4/6 inhibitors. Int J Mol Sci 21(18): 6479, 2020. PMID: 32899866. DOI: 10.3390/ijms21186479
    OpenUrlCrossRefPubMed
  107. ↵
    1. Schettini F,
    2. De Santo I,
    3. Rea CG,
    4. De Placido P,
    5. Formisano L,
    6. Giuliano M,
    7. Arpino G,
    8. De Laurentiis M,
    9. Puglisi F,
    10. De Placido S and
    11. Del Mastro L
    : CDK 4/6 inhibitors as single agent in advanced solid tumors. Front Oncol 8: 608, 2018. PMID: 30631751. DOI: 10.3389/fonc.2018.00608
    OpenUrlCrossRefPubMed
  108. ↵
    1. Karasic TB,
    2. O’Hara MH,
    3. Teitelbaum UR,
    4. Damjanov N,
    5. Giantonio BJ,
    6. d’Entremont TS,
    7. Gallagher M,
    8. Zhang PJ and
    9. O’Dwyer PJ
    : Phase II trial of palbociclib in patients with advanced esophageal or gastric cancer. Oncologist 25(12): e1864-e1868, 2020. PMID: 32692450. DOI: 10.1634/theoncologist.2020-0681
    OpenUrlCrossRefPubMed
  109. ↵
    1. Yang C,
    2. Shen S,
    3. Zheng X,
    4. Ye K,
    5. Ge H,
    6. Sun Y and
    7. Lu Y
    : Long non-coding RNA LINC00337 induces autophagy and chemoresistance to cisplatin in esophageal squamous cell carcinoma cells via upregulation of TPX2 by recruiting E2F4. FASEB J 34(5): 6055-6069, 2020. PMID: 32239565. DOI: 10.1096/fj.201900731RR
    OpenUrlCrossRefPubMed
  110. ↵
    1. Sardet C,
    2. Vidal M,
    3. Cobrinik D,
    4. Geng Y,
    5. Onufryk C,
    6. Chen A and
    7. Weinberg RA
    : E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci USA 92(6): 2403-2407, 1995. PMID: 7892279. DOI: 10.1073/pnas.92.6.2403
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Asteriti IA,
    2. Rensen WM,
    3. Lindon C,
    4. Lavia P and
    5. Guarguaglini G
    : The Aurora-A/TPX2 complex: a novel oncogenic holoenzyme? Biochim Biophys Acta 1806(2): 230-239, 2010. PMID: 20708655. DOI: 10.1016/j.bbcan.2010.08.001
    OpenUrlCrossRefPubMed
  112. ↵
    1. Yang W,
    2. Wan H,
    3. Shan R,
    4. Wen W,
    5. Li J,
    6. Luo D and
    7. Wan RH
    : The clinical significance and prognostic value of Xenopus kinesin-like protein 2 expressions in human tumors: A systematic review and meta-analysis. J Cell Physiol, 2019. PMID: 30779127. DOI: 10.1002/jcp.28343
    OpenUrlCrossRefPubMed
  113. ↵
    1. Bayliss R,
    2. Sardon T,
    3. Vernos I and
    4. Conti E
    : Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12(4): 851-862, 2003. PMID: 14580337. DOI: 10.1016/s1097-2765(03)00392-7
    OpenUrlCrossRefPubMed
  114. ↵
    1. Tischer J and
    2. Gergely F
    : Anti-mitotic therapies in cancer. J Cell Biol 218(1): 10-11, 2019. PMID: 30545842. DOI: 10.1083/jcb.201808077
    OpenUrlFREE Full Text
  115. ↵
    1. Sui C,
    2. Song Z,
    3. Yu H and
    4. Wang H
    : Prognostic significance of TPX2 and NIBP in esophageal cancer. Oncol Lett 18(4): 4221-4229, 2019. PMID: 31516617. DOI: 10.3892/ol.2019.10747
    OpenUrlCrossRefPubMed
    1. Liu HC,
    2. Zhang GH,
    3. Liu YH,
    4. Wang P,
    5. Ma JF,
    6. Su LS,
    7. Li SL,
    8. Zhang L and
    9. Liu JW
    : TPX2 siRNA regulates growth and invasion of esophageal cancer cells. Biomed Pharmacother 68(7): 833-839, 2014. PMID: 25239289. DOI: 10.1016/j.biopha.2014.08.008
    OpenUrlCrossRefPubMed
  116. ↵
    1. Hsu PK,
    2. Chen HY,
    3. Yeh YC,
    4. Yen CC,
    5. Wu YC,
    6. Hsu CP,
    7. Hsu WH and
    8. Chou TY
    : TPX2 expression is associated with cell proliferation and patient outcome in esophageal squamous cell carcinoma. J Gastroenterol 49(8): 1231-1240, 2014. PMID: 23963785. DOI: 10.1007/s00535-013-0870-6
    OpenUrlCrossRefPubMed
  117. ↵
    1. Qin B,
    2. Dong M,
    3. Wang Z,
    4. Wan J,
    5. Xie Y,
    6. Jiao Y and
    7. Yan D
    : Long non coding RNA CASC15 facilitates esophageal squamous cell carcinoma tumorigenesis via decreasing SIM2 stability via FTO mediated demethylation. Oncol Rep 45(3): 1059-1071, 2021. PMID: 33650646. DOI: 10.3892/or.2020.7917
    OpenUrlCrossRefPubMed
  118. ↵
    1. Tamaoki M,
    2. Komatsuzaki R,
    3. Komatsu M,
    4. Minashi K,
    5. Aoyagi K,
    6. Nishimura T,
    7. Chiwaki F,
    8. Hiroki T,
    9. Daiko H,
    10. Morishita K,
    11. Sakai Y,
    12. Seno H,
    13. Chiba T,
    14. Muto M,
    15. Yoshida T and
    16. Sasaki H
    : Multiple roles of single-minded 2 in esophageal squamous cell carcinoma and its clinical implications. Cancer Sci 109(4): 1121-1134, 2018. PMID: 29427302. DOI: 10.1111/cas.13531
    OpenUrlCrossRefPubMed
  119. ↵
    1. Chen J and
    2. Du B
    : Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol 145(1): 19-29, 2019. PMID: 30465076. DOI: 10.1007/s00432-018-2796-0
    OpenUrlCrossRefPubMed
  120. ↵
    1. Wang T,
    2. Kong S,
    3. Tao M and
    4. Ju S
    : The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer 19(1): 88, 2020. PMID: 32398132. DOI: 10.1186/s12943-020-01204-7
    OpenUrlCrossRefPubMed
  121. ↵
    1. Li Z,
    2. Weng H,
    3. Su R,
    4. Weng X,
    5. Zuo Z,
    6. Li C,
    7. Huang H,
    8. Nachtergaele S,
    9. Dong L,
    10. Hu C,
    11. Qin X,
    12. Tang L,
    13. Wang Y,
    14. Hong GM,
    15. Huang H,
    16. Wang X,
    17. Chen P,
    18. Gurbuxani S,
    19. Arnovitz S,
    20. Li Y,
    21. Li S,
    22. Strong J,
    23. Neilly MB,
    24. Larson RA,
    25. Jiang X,
    26. Zhang P,
    27. Jin J,
    28. He C and
    29. Chen J
    : FTO plays an oncogenic role in acute myeloid leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell 31(1): 127-141, 2017. PMID: 28017614. DOI: 10.1016/j.ccell.2016.11.017
    OpenUrlCrossRefPubMed
  122. ↵
    1. Liu S,
    2. Huang M,
    3. Chen Z,
    4. Chen J,
    5. Chao Q,
    6. Yin X and
    7. Quan M
    : FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13. Exp Cell Res 389(1): 111894, 2020. PMID: 32035950. DOI: 10.1016/j.yexcr.2020.111894
    OpenUrlCrossRefPubMed
  123. ↵
    1. Zang W,
    2. Wang T,
    3. Wang Y,
    4. Chen X,
    5. Du Y,
    6. Sun Q,
    7. Li M,
    8. Dong Z and
    9. Zhao G
    : Knockdown of long non-coding RNA TP73-AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma. Oncotarget 7(15): 19960-19974, 2016. PMID: 26799587. DOI: 10.18632/oncotarget.6963
    OpenUrlCrossRefPubMed
  124. ↵
    1. Guo K,
    2. Lukacik P,
    3. Papagrigoriou E,
    4. Meier M,
    5. Lee WH,
    6. Adamski J and
    7. Oppermann U
    : Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase. J Biol Chem 281(15): 10291-10297, 2006. PMID: 16380372. DOI: 10.1074/jbc.M511346200
    OpenUrlAbstract/FREE Full Text
  125. ↵
    1. Yang WC,
    2. Tsai WC,
    3. Lin PM,
    4. Yang MY,
    5. Liu YC,
    6. Chang CS,
    7. Yu WH and
    8. Lin SF
    : Human BDH2, an anti-apoptosis factor, is a novel poor prognostic factor for de novo cytogenetically normal acute myeloid leukemia. J Biomed Sci 20: 58, 2013. PMID: 23941109. DOI: 10.1186/1423-0127-20-58
    OpenUrlCrossRefPubMed
  126. ↵
    1. Liu JZ,
    2. Hu YL,
    3. Feng Y,
    4. Jiang Y,
    5. Guo YB,
    6. Liu YF,
    7. Chen X,
    8. Yang JL,
    9. Chen YY,
    10. Mao QS and
    11. Xue WJ
    : BDH2 triggers ROS-induced cell death and autophagy by promoting Nrf2 ubiquitination in gastric cancer. J Exp Clin Cancer Res 39(1): 123, 2020. PMID: 32605589. DOI: 10.1186/s13046-020-01620-z
    OpenUrlCrossRefPubMed
  127. ↵
    1. Liang H,
    2. Xiong Z,
    3. Li R,
    4. Hu K,
    5. Cao M,
    6. Yang J,
    7. Zhong Z,
    8. Jia C,
    9. Yao Z and
    10. Deng M
    : BDH2 is downregulated in hepatocellular carcinoma and acts as a tumor suppressor regulating cell apoptosis and autophagy. J Cancer 10(16): 3735-3745, 2019. PMID: 31333791. DOI: 10.7150/jca.32022
    OpenUrlCrossRefPubMed
  128. ↵
    1. Wu Y,
    2. Hu L,
    3. Liang Y,
    4. Li J,
    5. Wang K,
    6. Chen X,
    7. Meng H,
    8. Guan X,
    9. Yang K and
    10. Bai Y
    : Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2. Mol Cancer 16(1): 150, 2017. PMID: 28854977. DOI: 10.1186/s12943-017-0715-7
    OpenUrlCrossRefPubMed
  129. ↵
    1. Matsuhashi S,
    2. Manirujjaman M,
    3. Hamajima H and
    4. Ozaki I
    : Control mechanisms of the tumor suppressor PDCD4: Expression and functions. Int J Mol Sci 20(9): 2304, 2019. PMID: 31075975. DOI: 10.3390/ijms20092304
    OpenUrlCrossRefPubMed
    1. Lankat-Buttgereit B and
    2. Göke R
    : Programmed cell death protein 4 (pdcd4): a novel target for antineoplastic therapy? Biol Cell 95(8): 515-519, 2003. PMID: 14630388. DOI: 10.1016/j.biolcel.2003.09.003
    OpenUrlCrossRefPubMed
  130. ↵
    1. Wang Q and
    2. Yang HS
    : The role of Pdcd4 in tumour suppression and protein translation. Biol Cell: boc.201800014, 2018. PMID: 29806708. DOI: 10.1111/boc.201800014
    OpenUrlCrossRefPubMed
  131. ↵
    1. Yang M,
    2. Liu R,
    3. Li X,
    4. Liao J,
    5. Pu Y,
    6. Pan E,
    7. Yin L and
    8. Wang Y
    : miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4. Mol Cells 37(12): 873-880, 2014. PMID: 25518924. DOI: 10.14348/molcells.2014.0147
    OpenUrlCrossRefPubMed
  132. ↵
    1. Fassan M,
    2. Realdon S,
    3. Pizzi M,
    4. Balistreri M,
    5. Battaglia G,
    6. Zaninotto G,
    7. Ancona E and
    8. Rugge M
    : Programmed cell death 4 nuclear loss and miR-21 or activated Akt overexpression in esophageal squamous cell carcinogenesis. Dis Esophagus 25(3): 263-268, 2012. PMID: 21883657. DOI: 10.1111/j.1442-2050.2011.01236.x
    OpenUrlCrossRefPubMed
  133. ↵
    1. Guan Z,
    2. Wang Y,
    3. Wang Y,
    4. Liu X,
    5. Wang Y,
    6. Zhang W,
    7. Chi X,
    8. Dong Y,
    9. Liu X,
    10. Shao S and
    11. Zhan Q
    : Long non-coding RNA LOC100133669 promotes cell proliferation in oesophageal squamous cell carcinoma. Cell Prolif 53(4): e12750, 2020. PMID: 32130753. DOI: 10.1111/cpr.12750
    OpenUrlCrossRefPubMed
  134. ↵
    1. Schulz C,
    2. Lytovchenko O,
    3. Melin J,
    4. Chacinska A,
    5. Guiard B,
    6. Neumann P,
    7. Ficner R,
    8. Jahn O,
    9. Schmidt B and
    10. Rehling P
    : Tim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex. J Cell Biol 195(4): 643-656, 2011. PMID: 22065641. DOI: 10.1083/jcb.201105098
    OpenUrlAbstract/FREE Full Text
    1. Geissler A,
    2. Chacinska A,
    3. Truscott KN,
    4. Wiedemann N,
    5. Brandner K,
    6. Sickmann A,
    7. Meyer HE,
    8. Meisinger C,
    9. Pfanner N and
    10. Rehling P
    : The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111(4): 507-518, 2002. PMID: 12437924. DOI: 10.1016/s0092-8674(02)01073-5
    OpenUrlCrossRefPubMed
  135. ↵
    1. Yamamoto H,
    2. Esaki M,
    3. Kanamori T,
    4. Tamura Y,
    5. Nishikawa Si and
    6. Endo T
    : Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111(4): 519-528, 2002. PMID: 12437925. DOI: 10.1016/s0092-8674(02)01053-x
    OpenUrlCrossRefPubMed
  136. ↵
    1. Vyas S,
    2. Zaganjor E and
    3. Haigis MC
    : Mitochondria and cancer. Cell 166(3): 555-566, 2016. PMID: 27471965. DOI: 10.1016/j.cell.2016.07.002
    OpenUrlCrossRefPubMed
  137. ↵
    1. Zhang X,
    2. Han S,
    3. Zhou H,
    4. Cai L,
    5. Li J,
    6. Liu N,
    7. Liu Y,
    8. Wang L,
    9. Fan C,
    10. Li A and
    11. Miao Y
    : TIMM50 promotes tumor progression via ERK signaling and predicts poor prognosis of non-small cell lung cancer patients. Mol Carcinog 58(5): 767-776, 2019. PMID: 30604908. DOI: 10.1002/mc.22969
    OpenUrlCrossRefPubMed
  138. ↵
    1. Zhang XD,
    2. Huang GW,
    3. Xie YH,
    4. He JZ,
    5. Guo JC,
    6. Xu XE,
    7. Liao LD,
    8. Xie YM,
    9. Song YM,
    10. Li EM and
    11. Xu LY
    : The interaction of lncRNA EZR-AS1 with SMYD3 maintains overexpression of EZR in ESCC cells. Nucleic Acids Res 46(4): 1793-1809, 2018. PMID: 29253179. DOI: 10.1093/nar/gkx1259
    OpenUrlCrossRefPubMed
  139. ↵
    1. Kawaguchi K,
    2. Yoshida S,
    3. Hatano R and
    4. Asano S
    : Pathophysiological roles of Ezrin/Radixin/Moesin proteins. Biol Pharm Bull 40(4): 381-390, 2017. PMID: 28381792. DOI: 10.1248/bpb.b16-01011
    OpenUrlCrossRefPubMed
  140. ↵
    1. Song Y,
    2. Ma X,
    3. Zhang M,
    4. Wang M,
    5. Wang G,
    6. Ye Y and
    7. Xia W
    : Ezrin mediates invasion and metastasis in tumorigenesis: a review. Front Cell Dev Biol 8: 588801, 2020. PMID: 33240887. DOI: 10.3389/fcell.2020.588801
    OpenUrlCrossRefPubMed
  141. ↵
    1. Xie JJ,
    2. Xu LY,
    3. Xie YM,
    4. Zhang HH,
    5. Cai WJ,
    6. Zhou F,
    7. Shen ZY and
    8. Li EM
    : Roles of ezrin in the growth and invasiveness of esophageal squamous carcinoma cells. Int J Cancer 124(11): 2549-2558, 2009. PMID: 19165868. DOI: 10.1002/ijc.24216
    OpenUrlCrossRefPubMed
  142. ↵
    1. Xie JJ,
    2. Xu LY,
    3. Wu ZY,
    4. Zhao Q,
    5. Xu XE,
    6. Wu JY,
    7. Huang Q and
    8. Li EM
    : Prognostic implication of ezrin expression in esophageal squamous cell carcinoma. J Surg Oncol 104(5): 538-543, 2011. PMID: 21416469. DOI: 10.1002/jso.21909
    OpenUrlCrossRefPubMed
  143. ↵
    1. Bottino C,
    2. Peserico A,
    3. Simone C and
    4. Caretti G
    : SMYD3: An oncogenic driver targeting epigenetic regulation and signaling pathways. Cancers (Basel) 12(1): 142, 2020. PMID: 31935919. DOI: 10.3390/cancers12010142
    OpenUrlCrossRefPubMed
  144. ↵
    1. Liu X,
    2. Zheng Z,
    3. Chen C,
    4. Guo S,
    5. Liao Z,
    6. Li Y,
    7. Zhu Y,
    8. Zou H,
    9. Wu J,
    10. Xie W,
    11. Zhang P,
    12. Xu L,
    13. Wu B and
    14. Li E
    : Network analyses elucidate the role of SMYD3 in esophageal squamous cell carcinoma. FEBS Open Bio 7(8): 1111-1125, 2017. PMID: 28781952. DOI: 10.1002/2211-5463.12251
    OpenUrlCrossRefPubMed
  145. ↵
    1. Feng F,
    2. Qiu B,
    3. Zang R,
    4. Song P and
    5. Gao S
    : Pseudogene PHBP1 promotes esophageal squamous cell carcinoma proliferation by increasing its cognate gene PHB expression. Oncotarget 8(17): 29091-29100, 2017. PMID: 28404970. DOI: 10.18632/oncotarget.16196
    OpenUrlCrossRefPubMed
  146. ↵
    1. Wei Y,
    2. Chiang WC,
    3. Sumpter R Jr.,
    4. Mishra P and
    5. Levine B
    : Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168(1-2): 224-238.e10, 2017. PMID: 28017329. DOI: 10.1016/j.cell.2016.11.042
    OpenUrlCrossRefPubMed
  147. ↵
    1. Tatsuta T,
    2. Model K and
    3. Langer T
    : Formation of membrane bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16(1): 248-259, 2005. PMID: 15525670. DOI: 10.1091/mbc.e04-09-0807
    OpenUrlAbstract/FREE Full Text
  148. ↵
    1. Gamble SC,
    2. Chotai D,
    3. Odontiadis M,
    4. Dart DA,
    5. Brooke GN,
    6. Powell SM,
    7. Reebye V,
    8. Varela-Carver A,
    9. Kawano Y,
    10. Waxman J and
    11. Bevan CL
    : Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 26(12): 1757-1768, 2007. PMID: 16964284. DOI: 10.1038/sj.onc.1209967
    OpenUrlCrossRefPubMed
  149. ↵
    1. Montano MM,
    2. Ekena K,
    3. Delage-Mourroux R,
    4. Chang W,
    5. Martini P and
    6. Katzenellenbogen BS
    : An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci USA 96(12): 6947-6952, 1999. PMID: 10359819. DOI: 10.1073/pnas.96.12.6947
    OpenUrlAbstract/FREE Full Text
  150. ↵
    1. Ren HZ,
    2. Wang JS,
    3. Wang P,
    4. Pan GQ,
    5. Wen JF,
    6. Fu H and
    7. Shan XZ
    : Increased expression of prohibitin and its relationship with poor prognosis in esophageal squamous cell carcinoma. Pathol Oncol Res 16(4): 515-522, 2010. PMID: 20069396. DOI: 10.1007/s12253-009-9242-1
    OpenUrlCrossRefPubMed
  151. ↵
    1. Zhong N,
    2. Cui Y,
    3. Zhou X,
    4. Li T and
    5. Han J
    : Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS. Tumour Biol 36(2): 1221-1231, 2015. PMID: 25344214. DOI: 10.1007/s13277-014-2742-y
    OpenUrlCrossRefPubMed
  152. ↵
    1. Gambari R,
    2. Brognara E,
    3. Spandidos DA and
    4. Fabbri E
    : Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 49(1): 5-32, 2016. PMID: 27175518. DOI: 10.3892/ijo.2016.3503
    OpenUrlCrossRefPubMed
  153. ↵
    1. Arun G,
    2. Diermeier SD and
    3. Spector DL
    : Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24(3): 257-277, 2018. PMID: 29449148. DOI: 10.1016/j.molmed.2018.01.001
    OpenUrlCrossRefPubMed
  154. ↵
    1. Xin Y,
    2. Huang M,
    3. Guo WW,
    4. Huang Q,
    5. Zhang LZ and
    6. Jiang G
    : Nano-based delivery of RNAi in cancer therapy. Mol Cancer 16(1): 134, 2017. PMID: 28754120. DOI: 10.1186/s12943-017-0683-y
    OpenUrlCrossRefPubMed
  155. ↵
    1. Crooke ST
    : Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther 27(2): 70-77, 2017. PMID: 28080221. DOI: 10.1089/nat.2016.0656
    OpenUrlCrossRefPubMed
  156. ↵
    1. Renganathan A and
    2. Felley-Bosco E
    : Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol 1008: 199-222, 2017. PMID: 28815541. DOI: 10.1007/978-981-10-5203-3_7
    OpenUrlCrossRefPubMed
  157. ↵
    1. Choudhari R,
    2. Sedano MJ,
    3. Harrison AL,
    4. Subramani R,
    5. Lin KY,
    6. Ramos EI,
    7. Lakshmanaswamy R and
    8. Gadad SS
    : Long noncoding RNAs in cancer: From discovery to therapeutic targets. Adv Clin Chem 95: 105-147, 2020. PMID: 32122521. DOI: 10.1016/bs.acc.2019.08.003
    OpenUrlCrossRefPubMed
  158. ↵
    1. Donlic A,
    2. Morgan BS,
    3. Xu JL,
    4. Liu A,
    5. Roble C Jr. and
    6. Hargrove AE
    : Discovery of small molecule ligands for MALAT1 by tuning an RNA-binding scaffold. Angew Chem Int Ed Engl 57(40): 13242-13247, 2018. PMID: 30134013. DOI: 10.1002/anie.201808823
    OpenUrlCrossRefPubMed
  159. ↵
    1. Winkle M,
    2. El-Daly SM,
    3. Fabbri M and
    4. Calin GA
    : Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 20(8): 629-651, 2021. PMID: 34145432. DOI: 10.1038/s41573-021-00219-z
    OpenUrlCrossRefPubMed
  160. ↵
    1. Ross J,
    2. Miron CE,
    3. Plescia J,
    4. Laplante P,
    5. McBride K,
    6. Moitessier N and
    7. Möröy T
    : Targeting MYC: From understanding its biology to drug discovery. Eur J Med Chem 213: 113137, 2021. PMID: 33460833. DOI: 10.1016/j.ejmech.2020.113137
    OpenUrlCrossRefPubMed
    1. Dusek CO and
    2. Hadden MK
    : Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin Drug Discov 16(3): 289-302, 2021. PMID: 33006903. DOI: 10.1080/17460441.2021.1832078
    OpenUrlCrossRefPubMed
  161. ↵
    1. Bushweller JH
    : Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer 19(11): 611-624, 2019. PMID: 31511663. DOI: 10.1038/s41568-019-0196-7
    OpenUrlCrossRefPubMed
  162. ↵
    1. Zeng S,
    2. Huang W,
    3. Zheng X,
    4. Liyan Cheng,
    5. Zhang Z,
    6. Wang J and
    7. Shen Z
    : Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur J Med Chem 210: 112981, 2021. PMID: 33160761. DOI: 10.1016/j.ejmech.2020.112981
    OpenUrlCrossRefPubMed
    1. Barghout SH
    : Targeted protein degradation: an emerging therapeutic strategy in cancer. Anticancer Agents Med Chem 21(2): 214-230, 2021. PMID: 32275492. DOI: 10.2174/1871520620666200410082652
    OpenUrlCrossRefPubMed
    1. Konstantinidou M,
    2. Li J,
    3. Zhang B,
    4. Wang Z,
    5. Shaabani S,
    6. Ter Brake F,
    7. Essa K and
    8. Dömling A
    : PROTACs- a game-changing technology. Expert Opin Drug Discov 14(12): 1255-1268, 2019. PMID: 31538491. DOI: 10.1080/17460441.2019.1659242
    OpenUrlCrossRefPubMed
  163. ↵
    1. Sun X,
    2. Gao H,
    3. Yang Y,
    4. He M,
    5. Wu Y,
    6. Song Y,
    7. Tong Y and
    8. Rao Y
    : PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 4: 64, 2019. PMID: 31885879. DOI: 10.1038/s41392-019-0101-6
    OpenUrlCrossRefPubMed
  164. ↵
    1. Guo K,
    2. Lukacik P,
    3. Papagrigoriou E,
    4. Meier M,
    5. Lee WH,
    6. Adamski J and
    7. Oppermann U
    : Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase. J Biol Chem 281(15): 10291-10297, 2006. PMID: 16380372. DOI: 10.1074/jbc.M511346200
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Cancer Genomics - Proteomics: 19 (4)
Cancer Genomics & Proteomics
Vol. 19, Issue 4
July-August 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Cancer Genomics & Proteomics.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Long Non-coding RNAs With In Vitro and In Vivo Efficacy in Preclinical Models of Esophageal Squamous Cell Carcinoma Which Act by a Non-microRNA Sponging Mechanism
(Your Name) has sent you a message from Cancer Genomics & Proteomics
(Your Name) thought you would like to see the Cancer Genomics & Proteomics web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Long Non-coding RNAs With In Vitro and In Vivo Efficacy in Preclinical Models of Esophageal Squamous Cell Carcinoma Which Act by a Non-microRNA Sponging Mechanism
ULRICH H. WEIDLE, FABIAN BIRZELE
Cancer Genomics & Proteomics Jul 2022, 19 (4) 372-389; DOI: 10.21873/cgp.20327

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Long Non-coding RNAs With In Vitro and In Vivo Efficacy in Preclinical Models of Esophageal Squamous Cell Carcinoma Which Act by a Non-microRNA Sponging Mechanism
ULRICH H. WEIDLE, FABIAN BIRZELE
Cancer Genomics & Proteomics Jul 2022, 19 (4) 372-389; DOI: 10.21873/cgp.20327
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Role of Long Non-coding RNAs in Cancer
    • Down-regulated lncRNAs and lncRNAs Involved in Signaling
    • Up-regulated lncRNAs and lncRNAs Activating Transcription Factors
    • lncRNAs Targeting Cell-cycle and Signaling Related Components
    • lncRNAs Targeting Further Components
    • Technical Issues
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Molecular Genetics and Targeted Therapies for Paediatric High-grade Glioma
  • Circular RNAs With Efficacy in Preclinical In Vitro and In Vivo Models of Esophageal Squamous Cell Carcinoma
Show more Review

Similar Articles

Keywords

  • Antisense oligonucleotides (ASO)
  • mode of action of long-non coding RNAs
  • oncogenic and tumor-suppressive lncRNAs
  • reconstitution and inhibition of lncRNAs
  • siRNA
  • xenografts
  • review
Cancer & Genome Proteomics

© 2022 Cancer Genomics & Proteomics

Powered by HighWire