Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Genomics & Proteomics
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Cancer Genomics & Proteomics

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Editorial Policies
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Review ArticleReview

Interstitial Deletions Generating Fusion Genes

IOANNIS PANAGOPOULOS and SVERRE HEIM
Cancer Genomics & Proteomics May 2021, 18 (3) 167-196; DOI: https://doi.org/10.21873/cgp.20251
IOANNIS PANAGOPOULOS
1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ioannis.panagopoulos@rr-research.no
SVERRE HEIM
1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
2Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.

Key Words:
  • Interstitial deletion
  • chromosome
  • cytogenetics
  • fusion gene
  • review

A fusion gene is defined as the physical juxtaposition of two different genes resulting in a chimeric structure consisting of the head of one gene and the tail of the other. It is an important class of mutations in both benign and malignant neoplasms where they often constitute the primary tumorigenic event (1-5). Clinically, fusion gene-detection may play a key role in the accurate diagnosis and sub-classification of cancers, may have prognostic significance, and the novel genes may even be the target of molecular therapy (6-9). Thus, they are key to an increased understanding of neoplastic processes and may serve as the ultimate biomarker. As such, they have attracted much attention.

Fusion genes have been detected in hematologic neoplasms as well as in both benign and malignant mesenchymal, epithelial, and other solid tumors (10, 11). During 1982-1988, 10 fusion genes were identified, followed by 162 during the next decade (1990-99). In the last update (January 15, 2021) of the “Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer”, the number of fusion genes had risen to 32,618 (12). The list is certainly going to become longer as more tumor samples are investigated using high throughput sequencing methodologies (10). However, many of the fusion genes detected by these techniques alone, i.e. without subsequent, meticulous verification by other methods, are likely to represent stochastic events without any pathogenetic significance (13).

Chromosomal translocations, and to a lesser extent inversions, have traditionally been viewed as the most common genetic mechanisms whereby fusion genes are generated. The existence of such events has been known since the 1980s and the field has been repeatedly and extensively reviewed (1-5, 7, 14-17).

In contrast, unbalanced genomic rearrangements leading to loss of material, in particular terminal and interstitial chromosomal deletions, have mostly been pathogenetically associated with loss of tumor suppressor genes (11, 18-20). In the 1970s, the detection of a constitutional interstitial deletion of chromosome band 13q14 in some patients with retinoblastoma was key to Knudson’s two-hit model of suppressor gene-mediated tumorigenesis and crucial for the subsequent discovery of RB1, the classical tumor suppressor gene (21-27). Another example was the interstitial deletion of chromosome band 9p21 detected in many types of cancer, but particularly in acute lymphoblastic leukemia, which results in loss of the cyclin dependent kinase inhibitor 2A and 2B genes (CDKN2A and CDK2NB) (28-31). Chromosome deletions resulting in the loss of an important allele and, consequently, reduced levels of protein in the cells lacking that allele (haploinsufficiency) may also contribute to cancer development, even in the absence of subsequent loss of the second allele (20, 32-34).

A less known consequence of interstitial chromosomal deletions is the formation of fusion genes. In the present review, we discuss this genetic mechanism, i.e. the fusion genes that develop through it, and the neoplastic diseases in which this appears to be preferred.

Genes at the Rims of Interstitial Deletions May Fuse to Form Chimeric Genes/Transcripts

The principle for the formation of a fusion gene by interstitial deletion is the same as that for a translocation-generated fusion. The deletion starts within the 5’-end of one gene and finishes within the 3’-end of another, its fusion partner. Both genes are transcribed in the same orientation, i.e. from telomere to centromere or from centromere to telomere. Thus, juxtaposition of the two genes by removal of the chromosome segment between them results in a chimeric structure consisting of the head of one gene and the tail of the other (Figure 1A). Depending on the size of the deletion, loss of gene loci between the fusion partners may or may not accompany the fusion gene formation.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Formation of a fusion gene (Gene A-B) by an interstitial deletion and a chromosome translocation. (A) The deletion starts within Gene A and finishes within Gene B. Both genes are transcribed from centromere to telomere. The juxtaposition of the two genes by removal of the chromosome segment (yellow region) between them results in the chimeric Gene A-B consisting of the head (5’-end) of Gene A and the tail (3’-end) of Gene B. Loss of gene loci mapping in the yellow region, between the fusion partners, accompanies the fusion gene formation. (B). Formation of Gene A-B fusion by chromosome translocation between the two homologous chromosomes ChrZ-1 and ChrZ-2. Gene A-B is formed on der(ChrZ-1) whereas the reciprocal Gene B-A is formed on the der(ChrZ-2) chromosome. Duplication of gene loci mapped in the yellow region accompanies the reciprocal Gene B-A formation.

It is important to note that a fusion gene generated by a deletion could also be formed by a translocation between homologous chromosomes if the breaks and recombinations are the same as those for the deletion (Figure 1B). For example, deletion in chromosome bands 1q22-23 breaks the genes lamin A/C (LMNA in 1q22) and neurotrophic receptor tyrosine kinase 1 (NTRK1 in 1q23.1), both of which are transcribed from centromere to telomere, to generate the LMNA-NTRK1 fusion gene in many malignancies (see below). The same LMNA-NTRK1 fusion gene can also be formed by a t(1;1)(q22;q23) chromosome translocation.

Most fusion genes have been detected using high throughput sequencing technologies. In fact, most were found as fusion transcripts in RNA sequencing analyses and were subsequently reported as fusion genes (35-39). For the majority of cases, no chromosome banding or other cytogenetic analysis, no fluorescence in situ hybridization (FISH), array comparative genome hybridization (aCGH), single nucleotide polymorphism (SNP) array, Southern blot or other methodologies were used to support this conclusion. As a consequence, no actual genome-level confirmation exists that fusion gene formation has taken place in these situations, i.e. no structural DNA rearrangement leading to the junction of two different genes has been proven. In order to fill this “gap” between fusion transcripts and fusion genes, Prof. Mitelman decided in his database that “chromosome abnormalities giving rise to gene fusions identified through RNA sequencing are by default designated as translocations (t), unless shown to arise by other types of chromosome rearrangements (del, dup, ins, inv)” (12, 40, 41). By way of example, the “Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer” lists the transcript emanating from a fusion between the transcriptional repressor GATA binding 1 (TPRS1) gene from 8q23.3 and the pleomorphic adenoma gene 1 (PLAG1) from 8q12.1 (TRPS1-PLAG1 chimera), found by RNA sequencing in a uterine myxoid leiomyosarcoma and a soft tissue myoepithelial tumor, as being generated by a t(8;8)(q12;q23) (12, 40, 41). However, no direct evidence for the presence of such a translocation is provided in the articles describing the genetic analyses of the above-mentioned tumors (40, 41). By contrast, we recently examined a chondroid syringoma carrying a del(8)(q12q23) as the only cytogenetic aberration (42). Using aCGH, FISH, reverse transcription polymerase chain reaction (RT-PCR), and Sanger sequencing methodologies, we showed that a TRPS1-PLAG1 chimeric gene was generated by the deletion (42) (Figure 2).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Identification of a TRPS1-PLAG1 fusion gene which is generated by the interstitial deletion del(8)(q12q23). (A) Partial karyotype showing the del(8)(q12q23) and the normal chromosome 8 (breakpoints are shown by arrows). (B) Array comparative genomic hybridization showing the deletion in the q arm of chromosome 8. Based on the hg19 assembly, the deletion started at position Chr8:57120365 in intron1 of PLAG1 and ended at Chr8:116661489 in exon 1 of TRPS1. (C) Gel electrophoresis showing the amplified TRPS1-PLAG1 cDNA fragments. (D) Partial sequence chromatograms of the cDNA amplified fragment showing the junction positions of exon 1 of TRPS1 with exon 2 of PLAG1 and exon 1 of TRPS1 with exon 3 of PLAG1. E) FISH analysis on metaphase spreads with PLAG1 probe (red signal) and TRPS1 probe (green signal) showing that the TRPS1-PLAG1 fusion gene is on the del(8)(q12q23) (yellow signal). One copy of PLAG1 (red signal) and one of TRPS1 (red signal) are on chromosome 8. Data and figure are obtained from reference 42.

Chimeric transcripts may also be formed at the transcription level. In that case, two independently transcribed, neighboring genes with the same orientation give rise to a single chimeric RNA which may code for a chimeric protein (43-46). Various names have been given for these chimeric transcripts such as readthrough transcripts, transcription induced chimeras, tandem RNA chimeras etc (47). They have been found in many mammals (48). Whether they should be viewed as genuine chimeric transcripts is still under discussion (43-50). An example involves the genes solute carrier family 45 member 3 (SLC45A3) and ETS Like 4 transcription factor (ELK4) which are both transcribed from telomere to centromere and map on 1q32 with a distance of 25 kbp between them. The chimeric SLC45A3-ELK4 transcript, detected in prostate cancer, was found to be generated by cis-splicing between the two neighboring genes SLC45A3 and ELK4 without any actual rearrangement of DNA (35, 51-53). That chimera is designed as resulting from a t(1;1)(q32;q32) in Mitelman’s database (12).

With all these difficulties, caveats, and provisos in mind, we provide a chromosome-by-chromosome list of the unambiguous deletion-generated neoplasia-associated fusion genes that we have been able to ascertain from the relevant literature (Table I).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table I.

Fusion genes generated by interstitial deletions in cancer.

Chromosome 1

The SCL/TAL1 interrupting locus (STIL is also known as SIL) maps on 1p33, is transcribed from centromere to telomere, and codes for a protein which is part of the pericentriolar material surrounding the parental centrioles, which is essential for centriole duplication during the cell cycle (54). The T-cell acute leukemia 1 (TAL1 also known as SCL, tal-1) gene maps just 18 kbp distal to STIL, is transcribed from centromere to telomere and codes for a transcription factor that harbors the basic helix-loop-helix domain (bHLH) which is a protein dimerization and DNA-binding motif common to many eukaryotic transcription factors (55).

In 1990, two independent research groups working on T-lineage acute lymphoblastic leukemias detected an approximately 90 kbp interstitial deletion in 1p33 which caused the 5’-untranslated part of STIL to fuse with the coding part of TAL1 (56, 57). The deletion placed the expression of TAL1 under the control of the STIL promoter, causing aberrant overexpression of the TAL1 protein (56, 57). To the best of our knowledge, this was the first description of a fusion gene resulting from an interstitial, submicroscopic deletion.

The STIL-TAL1 fusion gene has been reported in 15-25 % of pediatric and young adult T-lineage acute lymphoblastic leukemia (T-ALL) but much less frequently in older T-ALL patients (58-60). Compared to T-ALL patients without STIL-TAL1 fusions, those with the chimera have a higher white blood cell count at diagnosis, express CD2 on their leukemic cells and show a poor response to the steroid drug prednisone (59, 61, 62). The prognosis of STIL-TAL1 fusion-positive leukemias has been reported as both better, poorer or about equal to that of other T-ALL groups (59, 61-64). In murine models, abnormal expression of TAL1 has been reported to result in the development of T-cell malignances (65, 66).

Fusion of the gene coding for lamin A and C (LMNA) with the gene coding for neurotrophic receptor tyrosine kinase 1 (NTRK1) was reported to occur as the result of a 750 kbp interstitial deletion in chromosome bands 1q22-23 in a spitzoid melanoma (67). Both genes are transcribed from centromere to telomere. Subsequently, LMNA-NTRK1 fusion was also described in other neoplasias such as colon cancer, thyroid cancer, breast cancer, cholangiocarcinoma, soft tissue sarcoma, and uterine sarcoma (68-80). The LMNA-NTRK1 codes for a chimeric tyrosine kinase. Patients with this fusion can be treated with kinase inhibitors such as crizotinib, entrectinib, and larotrectinib with significant clinical response (71, 72, 79, 81-85).

In the 1q21-23 chromosomal region, 15 fusion genes involving NTRK1 have been reported. Based on the orientation of the transcription (from centromere to telomere), interstitial deletions come across as the probable cause of fusions between NTRK1 (3’-fusion partner) and zinc finger and BTB domain containing 7B (ZBTB7B), brevican (BCAN), chromatin target of protein arginine methyltransferase 1 (CHTOP), cingulin (CGN), platelet endothelial aggregation receptor 1 (PEAR1), or phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A). The fusions have been found in various tumors of the brain, breast, bladder, and neuroendocrine cells (75, 80, 86-89). Most fusions have been detected using high throughput sequencing methodologies. Cytogenetic, FISH, aCGH, or any other data confirming the said deletions at the genomic level are lacking.

Using CRISP-Cas9, Cook et al. (90) generated a microdeletion leading to a Bcan-Ntrk1 fusion gene in mice. The mice developed high-grade gliomas which responded to the Ntrk1 inhibitor entrectinib. In general, patients whose cancers carry NTRK1 fusion genes have responded satisfactorily to treatment with tyrosine kinase inhibitors (85, 91-95).

Chromosome 2

The anaplastic lymphoma kinase (ALK) gene maps to 2p23 (position chr2:29,192,774-29,921,586) and is transcribed from centromere to telomere. More than 20 ALK-chimeras have been reported in which the ALK 5’-fusion partner comes from another gene which also resides on the short arm of chromosome 2. In 10 of these ALK-chimeras, the 5’-fusion partner maps proximal to ALK (i.e. closer to chromosome 2 centromere) and is also transcribed from the centromere towards the telomere (Table I). Thus, an interstitial deletion could be the genomic mechanism behind the generation of these chimeras.

Fusion of the coiled-coil domain-containing protein 88A (CCDC88A) gene with ALK, giving a CCDC88A-ALK chimera, was found in an anaplastic ependymoma of an 8-month-old girl. An interstitial deletion del(2)(p16p23) was seen by G-banding examination of the tumor cells and confirmed by FISH. Genomic PCR showed that the deletion started within intron 12 of CCDC88 (2p16.1) and ended within intron 19 of ALK (2p32.2) (96).

ALK-fusions were detected with the genes dynactin 1 (DCTN1) in uterine inflammatory myofibroblastic tumor and pancreatic ductal adenocarcinoma (DCTN1-ALK chimera) (97, 98), glutamine:fructose-6-phosphate amidotransferase 1 (GFPT1) in medullary thyroid cancer (GFPT1-ALK chimera) (99), WD repeat-containing planar cell polarity effector (WDPCP) in lung adenocarcinoma (WDPCP-ALK chimera) (100), BAF chromatin remodeling complex subunit BCL11A in lung adenocarcinoma (BCL11A-ALK chimera) (101, 102), S1 RNA binding domain 1 (SRBD1) in lung adenocarcinoma (SRBD1-ALK chimera) (103, 104), and striatin (STRN) in lung adenocarcinoma, malignant peritoneal mesothelioma, and thyroid carcinoma (STRN-ALK chimera) (105-108). These were true chimeric genes resulting from DNA rearrangements, possibly deletions between the 5’-fusion partner and ALK (the 3’partner). In all the above-mentioned fusion genes, the genomic breakpoint in ALK was within the 1932 bp long intron 19 of the gene.

Irrespective of the 5’-fusion partner gene, all ALK-chimeras seem to code for chimeric protein tyrosine kinases (109). Patients whose tumors carry ALK-chimeras, respond well to treatment with ALK inhibitors (110-115). More specifically, patients whose tumors carry the fusions DCTN1-ALK, BCL11A-ALK, SRBD1-ALK, STPG4-ALK, and STRN-ALK have reportedly shown excellent response to ALK inhibitors such as Crizotinib, Ceritinib, and Alectinib (98, 101-103, 105-107, 116).

Chromosome 4

The factor interacting with PAPOLA and CPSF1 (FIP1L1) gene and the platelet derived growth factor receptor alpha (PDGFRA) gene both map to chromosome band 4q12 and are transcribed from centromere to telomere. The distance between them is 800 kbp. FIP1L1 codes for a subunit of the cleavage and polyadenylation specificity factor complex that polyadenylates the 3’ end of mRNA precursors (117). PDGFRA codes for a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family (118-120). PDGFRA together with its paralog gene platelet derived growth factor receptor beta (PDGFRB), and the genes colony stimulating factor 1 receptor (CSFR1), KIT proto-oncogene receptor tyrosine kinase (KIT), and fms related receptor tyrosine kinase 3 (FLT3) code for the class III family of receptor tyrosine kinases that have important roles in leukemo- and tumorigenesis (120-124).

In 2003, the FIP1L1-PDGFRA fusion gene was, as a result of an 800 kbp interstitial chromosomal deletion in 4q12, detected in nine out of 16 patients with hypereosinophilic syndrome (125). FIP1L1-PDGFRA codes for a chimeric, constitutively active tyrosine kinase which consists of the first 233 amino acids of FIP1L1 and the last 523 amino acids of PDGFRA. Imatinib inhibits tyrosine phosphorylation by the FIP1L1-PDGFRA fusion protein (125). Nowadays, the World Health Organization’s “Classification of tumours of haematopoietic and lymphoid tissues” lists, under the category “Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2”, the new subgroup “Myeloid/lymphoid neoplasms with PDGFRA rearrangement” in which FIP1L1-PDGFRA is the most commonly detected gene fusion (126-128). Patients with this disease usually respond well to imatinib (129, 130).

Chromosome 5

The PDGFRB gene maps to 5q32 and is transcribed from telomere to centromere. It encodes, similarly to its homologous PDGFRA gene, a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family (119, 120, 123, 124). In 1994, Golub et al. reported that the t(5;12)(q33;p13) chromosome translocation sometimes seen in chronic myelomonocytic leukemia results in fusion of the ETS variant transcription factor 6 gene (ETV6, also known as TEL) from 12p13 with PDGFRB (131). According to the January 15, 2021 version of the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, 49 PDGFRB chimeras have been reported, most of them in hematologic malignancies (12). The consequence of the PDGFRB fusions is constitutive activation of the PDGFRB tyrosine kinase (120, 123). Patients with hematologic malignancies bearing PDGFRB chimeras can be successfully treated with imatinib (132-140).

The genes EBF transcription factor 1 (EBF1 on 5q33.3), CD74 molecule (CD74 on 5q33.1), secreted protein acidic and cysteine rich (SPARC on 5q33.1), and TNFAIP3 interacting protein 1 (TNIP1 on 5q33.1) are transcribed from telomere to centromere and have been found to fuse as 5’-end partner genes with PDGFRB (Table I). The EBF1-PDGFRB chimera, which is found in B-lineage acute lymphoblastic leukemia, in the majority of cases results from an 8.6 Mbp interstitial deletion, del(5)(q32q33.3), with breakpoints within the EBF1 and PDGFRB genes (132, 133, 141-143). In very few cases, a chromosome translocation has instead been shown to generate the EBF1-PDGFRB chimera (142). The TNIP1-PDGFRB chimera results from a 900 kbp interstitial deletion with breakpoints located within TNIP1 and PDGFRB (6, 144-146).

No information exists about DNA rearrangements behind the formation of the CD74-PDFGRB and SPARC-PDGFRB chimeras found in a patient with B-ALL and a case of lipofibromatosis, respectively (147, 148). CD74 and SPARC are located 240 kb and 1.5 Mbp distal to PDGFRB, respectively. Since both genes are transcribed from telomere to centromere, as is PDGFRB, and since both are distal to PDGFRB, we see it as probable that both fusions are the product of interstitial deletions.

Chromosome 6

The ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) gene maps on 6q22.1, is transcribed from telomere to centromere, and codes for a tyrosine kinase receptor with similarities to the Drosophila sevenless tyrosine kinase receptor (149-155). Neither the expression nor the cellular function of ROS1 has been well studied but the gene seems to be widely expressed. Examining the expression of ROS1 in 45 different human cell lines, the majority from various neoplasias, Birchmeier et al. (152, 155-158) found high-level expression in glioblastoma-derived cell lines but no to very low expression in the remainder. Further studies have shown ectopic expression of ROS1 also in other brain tumors (152, 155-158). ROS1 chimeras have been reported in various types of cancer, more and more as tumors are increasingly being screened for fusion genes/transcripts. In 2016, a review of ROS1 fusions in cancer reported 26 genes as having been found to fuse with ROS1 (159) whereas a similar recent review reported the number of ROS1 fusion partners to be 54 (160). In 2020, the year before the review by Drilon et al. (160) was published, another 14 novel ROS1 fusion partner genes were added to the list (161-165), raising the total currently known number of ROS1 chimeras to 68. Regardless of their large number and variability, ROS1 chimeras encode chimeric ROS1 proteins which are constitutively active kinases and which, consequently, may be targets for treatment with kinase inhibitors (13, 160, 166-171).

In 2003, Charest et al. (172) showed that cells from a glioblastoma contained a 250 kbp submicroscopic interstitial deletion causing fusion of the golgi associated PDZ and coiled-coil motif containing GOPC (also known as FIG) gene with ROS1. The GOPC-ROS1 transcript, which consists of the first seven exons of GOPC and the last nine exons of ROS1, was in-frame and coded for a constitutively active GOPC-ROS1 chimeric protein that seems to be oncogenic (172, 173). At present, the GOPC-ROS1 chimera is considered to be a rare, but recurrent, fusion found in glioma, lung adenocarcinoma, cholangiocarcinoma, and high-grade serous ovarian carcinoma (166, 168, 172, 174-177). The chimeric GOPC-ROS1 protein may be the target for kinase inhibitors (160, 166-169, 177).

In 2013, a 41.5 Mbp interstitial deletion, del(6)(q22q25), was reported to fuse the first 10 exons of the ezrin (EZR) gene, which is transcribed from telomere to centromere and maps on 6q25.3, with exons 34-43 of the ROS1 gene in lung adenocarcinomas from four female patients, three of whom had never been smokers (178). The EZR-ROS1 gene coded for a chimeric protein with oncogenic activity. It contained the FERM domain of the EZR protein joined to the transmembrane and kinase domains of ROS1 (178). Additional studies confirmed the recurrence of EZR-ROS1 in lung cancer and also that the finding was clinically important: the chimeric protein could be the target of kinase inhibitors with very good results (160, 161, 167, 169, 179-184).

A chimera with the centrosomal protein 85 like (CEP85L) gene, which maps on 6q22.31, 1.0 Mbp distal to ROS1, and is transcribed from telomere to centromere, as the 5’-end partner gene and ROS1 as the 3’-end partner gene has been reported in an angiosarcoma as well as a few glioblastomas (87, 166, 185-188). The chimeric CEP85L–ROS1 transcript was accompanied by deletion of the 5’-end of ROS1 suggesting that an interstitial 1.1 Mbp submicroscopic deletion within band 6q22 caused the CEP85L–ROS1 chimera (166, 185). The CEP85L–ROS1 transcript codes for a chimeric protein with oncogenic activity. The protein can be targeted with kinase inhibitors (87, 166, 185-188).

Recently, three novel in-frame ROS1 chimeric transcripts were detected (161, 164) using high throughput technology, probably corresponding to microdeletions between ROS1 (as the 3’-end partner gene) and 5’-end partner genes (161, 164). In the first chimeric transcript, found in a melanoma of the skin, the SFT2 domain containing 1 (SFT2D1) gene was fused to ROS1 (161). In the second transcript, found in a serous carcinoma of the ovary, an invasive ductal breast carcinoma, and in a carcinoma of unknown origin, the protein tyrosine phosphatase receptor type K (PTPRK) gene was fused to ROS1 (161). In the third transcript, found in a leiomyosarcoma, the mannosidase alpha class 1A member 1 (MAN1A1) gene was fused with ROS1 (164). In vitro assays showed that the MAN1A1-ROS1 protein had strong transformation potential and that the kinase inhibitor crizotinib inhibited growth of MAN1A1-ROS1 transformed cells in a dose-dependent manner (164).

The SFT2D1, PTPRK, and MAN1A1 genes are distal to ROS1 and map on 6q27, 6q22.33, and 6q22.31, respectively. They are transcribed from telomere to centromere. Thus, a 49 Mbp deletion is predicted to have caused the SFT2D1-ROS1, an 11 Mbp deletion the PTPRK-ROS1, whereas a 2 Mbp deletion probably resulted in the MAN1A1-ROS1 chimera.

The MYB proto-oncogene (MYB is also known as c-MYB) gene codes for a transcription regulator with three helix-turn-helix (HTH) DNA-binding domains, maps on 6q23.3, and is transcribed from centromere to telomere (189, 190). The gene and its paralogues MYBL1 (also known as A-MYB, on 8q13.1) and MYBL2 (also known as B-MYB, on 20q13.12) compose the MYB family of transcription factors which play important roles in cell growth, differentiation, and apoptosis (191-193). MYB regulates hematopoiesis, is crucial for colon development in murine animals, and is required for the proliferation of neural progenitor cells and maintenance of the neural stem cell niche (189, 193-196). Because MYB is involved in many malignancies such as leukemias and solid cancers of breast, colon, and brain, it has been considered as an attractive target for anti-tumor therapy (193, 197, 198).

The QKI, KH domain containing RNA binding (QKI) gene, which codes for a protein that regulates pre-mRNA splicing, export of mRNAs from the nucleus, protein translation, and mRNA stability, maps on 6q26 and is transcribed from centromere to telomere (199-201). In 2014, Roth et al. (202) used high-resolution SNP array methodology to detect, in a pediatric ganglioglioma, a 30 Mbp deletion in 6q23.3-26 with the proximal breakpoint in the last intron of MYB and the distal one within the QKI gene. They proposed that the result of this deletion would be a MYB-QKI fusion gene, a chimera that had previously been reported in a pediatric low-grade glioma (203). The MYB-QKI fusion gene was subsequently found to characterize angiocentric gliomas (204-207). Interstitial deletion as a mechanism for the generation of the MYB-QKI fusion was reported in two of the studies (204-207).

Chromosome 7

The B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene maps to 7q34 and transcribes from telomere to centromere (208-210). It codes for a member of the RAF family of serine/threonine protein kinases which is involved in regulating the MAP kinase/ERK signaling pathway and affects cell division, differentiation, and secretion (211-214).

Mutations in BRAF, most commonly the V600E mutation, have been found in many malignancies such as melanoma, colorectal cancer, thyroid carcinoma, non-small cell lung carcinoma, hairy cell leukemia, non-Hodgkin lymphoma, and adenocarcinoma of lung (214-216). The mutations play a fundamental role in cancer development. They constitutively activate BRAF resulting in an over-performing RAF-MEK-ERK signaling cascade, promotion of cell proliferation and survival, and inhibition of apoptosis (214-216). The identification and characterization of pathogenic BRAF mutations have led to the development of BRAF kinase inhibitors used to treat patients whose cancers carry this particular genetic abnormality (214, 215, 217, 218).

BRAF chimeras have also been reported (12). In Mitelman’s Database of Chromosome Aberrations and Gene Fusions in Cancer (updated October 15, 2020), 95 BRAF chimeras were registered with 30 of them involving a partner gene in 7q.

Using aCGH, Cin et al. (219) found in three pilocytic astrocytomas a 2.5 Mbp interstitial deletion in chromosome band 7q34. The deletion led to in-frame fusion of the currently uncharacterized gene with the name “family with sequence similarity 131-member B” (FAM131B) with BRAF. The chimeric FAM131B-BRAF protein was a constitutively active kinase with MEK phosphorylation potential and transforming activity in vitro (219). Subsequent studies confirmed the existence of a submicroscopic interstitial deletion in 7q34 and the recurrent generation of a FAM131B-BRAF chimeric gene in pilocytic astrocytomas (202, 206, 220, 221).

Chromosome 8

The gene with the name “hes related family bHLH transcription factor with YRPW motif 1” (HEY1) maps on 8q21.13, is transcribed from telomere to centromere, and codes for a nuclear protein belonging to the hairy and enhancer of split-related (HESR) family of basic helix-loop-helix (bHLH)-type transcriptional repressors (222-225). The nuclear receptor coactivator 2 (NCOA2) gene maps on 8q13.3, is also transcribed from telomere to centromere, and codes for a transcriptional coactivator of nuclear hormone receptors (226-229). A HEY1-NCOA2 fusion gene has been reported to be pathognomonic for mesenchymal chondrosarcoma (230-236). SNP array analyses of a few such chondrosarcomas indicated an interstitial deletion as the cause of the HEY1-NCOA2 chimeric gene (221, 231).

The pleomorphic adenoma gene 1 (PLAG1) maps to 8q12.1, is transcribed from telomere to centromere, and codes for a zinc finger transcription factor (237-240). PLAG1 spans 50 kbp and contains 5 exons, the first 3 of which are untranslated (NCBI reference: NM_002655.3) (237, 241). PLAG1 was initially found to be rearranged in pleomorphic adenomas carrying a t(3;8)(p22;q12) translocation which led to its fusion as a 3’-end partner with the catenin beta 1 (CTNNB1) gene from 3p22.1 (237). Subsequently, various PLAG1-fusion genes were found in pleomorphic adenomas of the salivary glands, lipoblastomas, as well as other tumors (40-42, 242-246). In PLAG1 chimeras, the two fusion partner genes exchange their promoters and the 5’-end untranslated exons. Consequently, the expression of PLAG1 is controlled and regulated by the fusion partner gene promoter. The PLAG1 gene is either overexpressed or activated which results in deregulation of its targeted genes and leading thus to tumor development (240, 247-251).

The hyaluronan synthase 2 (HAS2) gene maps on 8q24.13, is transcribed from telomere to centromere, and codes for the isoform 2 of hyaluronan synthase (252-256). HAS2 spans 29 kb and has 4 exons, the first of which is untranslated (NCBI reference: NM_005328.3). In 2000, a recurrent HAS2-PLAG1 fusion gene was detected in three lipoblastomas, two of which had del(8)(q12q24) and the third a ring chromosome 8 (244). The genomic breakpoints were in introns 1 of both HAS2 and PLAG1, and in the chimeric HAS2-PLAG1 transcripts, the untranslated exon 1 of HAS2 fused to either exon 2 or exon 3 of PLAG1 (244). Thus, the HAS2-PLAG1 fusion gene was the result of a 65.5 Mbp interstitial del(8)(q12q24) deletion. Subsequent reports on lipobastomas confirmed that the HAS2-PLAG1 fusion resulted from a del(8)(q12q24) (257-259).

The transcriptional repressor GATA binding 1 (TRPS1) gene maps on 8q23.3, is transcribed from telomere to centromere, and codes for a transcription factor that represses GATA-regulated genes and binds to a dynein light-chain protein (260). TRPS1 spans 260 kbp and has seven exons, the first of which is untranslated (NCBI reference: NM_014112.5). Chimeric TRPS1-PLAG1 transcripts in which exon 1 of TRPS1 was fused to exon 2 or exon 3 of PLAG1, were reported in soft tissue myoepithelial tumor, uterine myxoid leiomyosarcoma, and chondroid syringoma (40-42). G-banding analysis of the chondroid syringoma revealed an interstial deletion, del(8)(q12q23) (Figure 2A). aCGH examination confirmed the deletion and showed that it started in intron 1 of PLAG1 and ended in exon 1 of TRPS1 (Figure 2B). RT-PCR (Figure 2C) and Sanger sequencing (Figure 2D) confirmed the presence of the TRPS1-PLAG1 fusion transcripts. FISH analysis on metaphase spreads showed that the TRPS1-PLAG1 fusion gene was on the del(8)(q12q23) chromosome (Figure 2E). Thus, both the aCGH and karyotyping data indicated that a TRPS1-PLAG1 fusion gene had been formed as the result of a deletion (42).

The N-myc downstream regulated 1 gene (NDRG1) maps to 8q24.22, is transcribed from telomere to centromere and codes for a cytoplasmic protein involved in stress and hormonal responses, cell growth, and differentiation (261-264). The NDRG1 gene spans 60 kbp and has sixteen exons of which the first is untranslated (NCBI reference: NM_006096.4). A chimeric NDRG1-PLAG1 transcript in which exon 1 of NDRG1 was fused to exon 3 of PLAG1 was found in a chondroid syringoma (42). FISH analysis showed that the NDRG1-PLAG1 chimeric gene was on a ring chromosome 8. No reciprocal PLAG1-NDRG1 chimeric gene was seen. The data indicated that an interstitial deletion had caused the NDRG1-PLAG1 chimera (42).

Chromosome 9

A fusion of the SET nuclear proto-oncogene (SET) with the nucleoporin 214 (NUP214) gene, also known as CAN, was discovered by von Linden et al. in an acute undifferentiated leukemia with normal karyotype. The discovery was made while they were looking for the DEK-NUP214 (alias DEK-CAN) fusion gene generated by t(6;9)(p22;q34) in acute myeloid leukemias (265-267).

SET and NUP214 map on 9q34.11 and 9q34.13, respectively, and are both transcribed from centromere to telomere. SET codes for a nuclear protein which inhibits both histone acetyltransferase and demethylation of DNA (268, 269), whereas NUP214 codes for a nuclear envelop protein which is a subunit of the nuclear pore complex (270). The SET-NUP214 protein is found within the nucleus. It causes disturbed intracellular localization of the chromosomal maintenance 1 (CRM1) protein that facilitates transport of RNA and protein across the nuclear membrane into the cytoplasm (271). As a consequence, disruption of the nuclear export system occurs. Recruitment of the SET-NUP214 protein onto HOX gene clusters leads to aberrant expression of HOX genes in leukemic cells (271, 272). Expression of SET-NUP214 in transgenic mice was shown to block hematopoietic differentiation (273).

In 2006, Rosati et al. reported that a 2.5 Mbp deletion generated SET-NUP214 fusion in an AML-patient (274). Subsequent studies confirmed that the submicroscopic deletion did indeed lead to SET-CAN chimeras in leukemias (274-281).

The SET-NUP214 chimera has been detected in AML as well as in undifferentiated acute leukemia (AUL) and B- and T-differentiated lymphoblastic leukemias (B-ALL and T-ALL). Its overall frequency in T-ALL is 3-8 % (275, 277, 282). SET-NUP214 is rare in pediatric T-ALL but was found in as many as 13 % of adult T-ALLs (60, 282). In a recent study of 24 patients whose leukemic cells carried a SET-NUP214 and who had undergone allogeneic hematopoietic stem cell transplantation, those who expressed SET-NUP214 after transplantation fared badly (283).

Chromosome 10

Vesicle transport through interaction with t-SNAREs 1A (VTI1A) and transcription factor 7 like 2 (TCF7L2) are neighboring genes in 10q25.2-25.3, separated by 130 kbp. Both are transcribed from centromere to telomere (284). The VTI1A gene codes for a soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor that is active in intracellular trafficking (285, 286). The TCF7L2 gene codes for a high mobility group (HMG) box-containing transcription factor that plays a key role in the Wnt signaling pathway (287, 288). Although several TCF7L2 tissue specific splice variants have been found, all of them code for a protein which has an N-terminal beta-catenin (CTNNB1)-binding domain and a HMG-box region (287-289).

Genomic sequencing of colorectal adenocarcinomas identified a 540 kbp deletion starting in intron 2 of the VTI1A gene and ending in intron 3 of the TCF7L2 gene, thus generating a VTI1A-TCF7L2 chimera which is in-frame transcribed and translated to a chimeric protein lacking the CTNNB1-binding domain of TCF7L2 (284). In the first study, the chimeric VTI1A-TCF7L2 gene was present in 3 % of the examined colorectal carcinomas (284). Later, Nome et al. (290) detected the VTI1A-TCF7L2 fusion transcript in 42 % of colorectal cancers but also in 28 % of normal colonic mucosa samples as well as in 25 % of normal tissue samples taken from various other anatomical sites. They also detected seven different splice variants of the VTI1A-TCF7L2 transcript (290). These data indicate that VTI1A-TCF7L2 is not specific for cancer nor for cells emanating from the large bowel. Nevertheless, functional studies of the VTI1A-TCF4 chimeric protein have shown that it acts as a dominant negative regulator of the Wnt signaling pathway, and that its transcription is activated by CDX2 (291). It is possible that it plays a pathogenetic role in cancer in spite of its lack of specificity.

Chromosome 11

The histone-lysine N-methyltransferase 2A gene (KMT2A, also known as MLL) maps to 11q23 and is transcribed from centromere to telomere. It encodes a transcriptional coactivator with multiple functional motifs and domains, among them a menin-binding motif at the amino-terminus, DNA binding AT hooks, a cysteine rich CXXC domain, plant homeodomain finger motifs, a bromodomain, a transactivation domain, and a SET domain at the carboxyl-terminus responsible for histone H3 lysine 4 (H3K4) methyltransferase activity (292-297). KMT2A is known to recombine with more than 100 different partners in hematologic malignances and solid tumors with most of the fusions coding for chimeric proteins (12). All KMT2A-chimeric proteins retain the menin-binding motif, the DNA binding AT hooks, and the CXXC domain indicating that they are essential for the transformation potential of the fusion proteins (282, 298-300).

Fusions of KMT2A with three genes - Rho guanine nucleotide exchange factor 12 (ARHGEF12), Casitas B-lineage lymphoma proto-oncogene (CBL), and decapping enzyme scavenger (DCPS) - were found to result from interstitial deletions in various hematologic malignancies (Table I) (147, 282, 298-305).

KMT2A-ARHGEF12 fusion is brought about by a 2Mbp deletion stretching from the major breakpoint cluster region of KMT2A, which spans from exon 7 to exon 13, to intron 11 or 13 of ARHGEF12 (Figure 3) (299-301, 304, 305). The result is an in-frame KMT2A-ARHGEF12 chimeric transcript that gives rise to a protein composed of the KMT2A amino-terminus and the ARHGEF12 carboxyl-terminus (299-301, 304, 305). So far, seven cases with KMT2A-ARHGEF12 fusion have been reported: three AMLs, three B-ALLs, and one high-grade B-cell lymphoma (147, 299-305). Figure 3 presents, in brief, our results on identification of a KMT2A-ARHGEF12 fusion gene generated by a therapy induced interstitial deletion in subband 11q23.3 in a child treated for acute myeloid leukemia (301). aCGH detects a deletion which starts in the KMT2A gene and ends in the ARHGEF12 gene (Figure 3A). The deletion is also confirmed by FISH (Figure 3B). Finally, molecular methodologies (genomic PCR and Sanger sequencing of the PCR amplified fragments) show that an intronic sequence of KMT2A fuses to an intronic sequence of ARHGEF12, generating a chimeric KMT2A-ARHGEF12 gene (Figure 3C).

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Identification of a KMT2A-ARHGEF12 fusion gene generated by an interstitial deletion in subband 11q23.3. (A) Array comparative genome hybridization detects a deletion which starts in the KMT2A gene and ends in the ARHGEF12 gene. (B) Fluorescence in situ hybridization confirms the deletion between the KMT2A and ARHGEF12 genes. The green and red probes hybridized on the normal chromosome 11. Only the red probes hybridized on the del(11) indicating the deleted area (green signals missing). (C) Examinations using molecular methodologies (genomic PCR and Sanger sequencing of the PCR amplified fragments) show that an intronic sequence of KMT2A fuses to an intronic sequence of ARHGEF12, generating a chimeric KMT2A-ARHGEF12 gene. Data and figure are from reference 305.

A KMT2A-CBL fusion is generated by an 800 kbp deletion starting within KMT2A and ending in CBL gene (282, 298-300). It gives rise to an in-frame KMT2A-CBL chimeric transcript that translates into a chimeric protein. Up to now, KMT2A-CBL fusion has been described in two AML and one T-Lineage ALL (282, 298-300).

Mayer et al. (306) described an AML patient with a del(11)(q23) in the diagnostic karyotype. Detailed investigation showed that the leukemic cells carried a 7.8 Mbp interstitial deletion which fused a genomic sequence from intron 8 of KMT2A with an intergenic sequence 7.2 kbp upstream of the DCPS gene. DCPS maps on 11q24.2, 10 kbp distal to TIRAP, and is transcribed, as is KMT2A, from centromere to telomere (306). At the transcription level, the deletion results in in-frame fusion of exon 8 of KMT2A with exon 2 of the DCPS gene (306).

The forkhead box R1 (FOXR1) gene maps to 11q23.3 (chr11:118,971,761-119,018,638), is transcribed from centromere to telomere, and codes for a member of the forkhead box (FOX) family of transcription factors which are expressed in the testis, predominantly in spermatogonia and meiotic spermatocytes (307, 308). Santo et al. (309) identified interstitial microdeletions activating the FOXR1 gene in three neuroblastomas. In two of them, a 500 kbp deletion between intron 1 of KMT2A upstream of the FOXR1 gene resulted in a KMT2A-FOXR1 chimeric transcript in which the entire coding region of FOXR1 was fused to exon 1 of KMT2A. In the third neuroblastoma, a 1.9 Mbp deletion within 11q23.3, starting within the platelet activating factor acetylhydrolase 1b catalytic subunit 2 (PAFAH1B2) and ending just upstream of FOXR1, resulted in two PAFAH1B-FOXR1 chimeric transcripts in which the entire coding region of FOXR1 was fused to exon 2 of PAFAH1B. Thus, both KMT2A-FOXR1 and PAFAH1B-FOXR1 resulted in FOXR1 expression (309).

Chromosome 19

In 2014, a 400 kbp submicroscopic deletion in 19p13.12 was found to fuse the DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) gene with the protein kinase cAMP-activated catalytic subunit alpha (PRKACA) gene in all fifteen examined cases of fibrolamellar hepatocellular carcinoma, a rare liver cancer (310). Both DNAJB1 and PRKACA are transcribed from centromere to telomere. Although the breakpoints were different in the examined cases, each deletion started either in intron 1 or exon 2 of DNAJB1 and ended in intron 1 of PRKACA. The resulting DNAJB1-PRKACA chimeric transcript thus comprised the first exon of DNAJB1 and exons 2-10 of PRKACA (310). The correlation between DNAJB1-PRKACA fusion gene formation and fibrolamellar hepatocellular carcinoma was quickly confirmed by other groups (311-316). Recently, the same fusion gene was reported to be recurrent also in intraductal oncocytic papillary neoplasms of the pancreas and bile ducts, cystic precursors to invasive carcinoma (317, 318).

The DNAJB1 gene codes for a member of the heat shock protein 40 family (HSP40) which interact with HSP70s and are involved in numerous cellular processes such as refolding, interaction, and transport of proteins (319, 320). PRKACA codes for one of the catalytic subunits of protein kinase A (321, 322). The DNAJB1-PRKACA gene codes for a chimeric protein kinase with oncogenic potential (310, 315, 323, 324). Both the first exon of DNAJB1 and the kinase domain of PRKACA were required for tumorigenesis (324).

Chromosome 21

In 2005, Tomlins et al. (325) reported a recurrent fusion transcript of transmembrane serine protease 2 (TMPRSS2) with the E26 transformation-specific (ETS) related gene (ERG), resulting in strong overexpression of ERG, in prostate cancer. The TMPRSS2-ERG fusion transcript was quickly confirmed by other groups and was found to be present in at least 40 % of prostate cancers (see below) and 20 % of high-grade prostatic intraepithelial neoplasia (326-331). The TPPRSS2 gene maps on 21q22.3, is transcribed from telomere to centromere, and codes for a type II transmembrane serine protease (332-334) which in prostate cancer is regulated by androgen (335, 336). The ERG gene maps on 21q22.2, 3.1 Mbp centromeric (proximal) to TMPRSS2. It is transcribed from telomere to centromere and codes for a member of the ETS family of transcription factors (337-339).

FISH and aCGH analyses show that the TMPRSS2-ERG fusion gene is generated by an approximately 3.0 Mbp interstitial deletion which starts in ERG and ends in TMPRSS2, by translocation between the two chromosomes 21 or by microdeletion and concurrent translocation (326, 327, 329-331, 340-344). Roughly 40 % to 60 % of TMPRSS2-ERG fusion genes in patients with prostate cancer are generated by deletions (345, 346). Furthermore, prostate cancer patients whose tumor cells have a TMPRSS2-ERG fusion stemming from deletion, seem to have worse prognosis than those with a fusion resulting from translocation (346, 347). The 3 Mbp region between ERG and TMPRSS2 contains many genes which are involved in cancer and may function as tumor suppressor genes. The fact that the interstitial deletion which generates the TMPRSS2-ERG fusion gene, simultaneously results in haploinsufficiency for these genes, may explain the clinical difference. In a murine model, Linn et al. (348) showed that only mice lacking the interstitial region developed prostate adenocarcinoma marked by poor differentiation and epithelial-to-mesenchymal transition.

Chromosome X/Y

The genes cytokine receptor like factor 2 (CRLF2, also known as TSLPR) and P2Y receptor family member 8 (P2RY8) map to the pseudoautosomal regions Xp22.33 and Yp11.2, are transcribed from centromere to telomere, and are separated by a 250 kbp genomic region (349-353). CRLF2 codes for a receptor for thymic stromal lymphoprotein (TSLP) (349-352). CRLF2 together with interleukin 7 receptor (IL7R) and TSLP form the TSLPR complex which is capable of activating multiple signaling transduction pathways, among them the JAK/STAT pathway and the PI-3 kinase pathway (354-356).

P2RY8 codes for a member of the family of G-protein coupled receptors (357-359). The P2RY8 protein together with its ligand, S-geranylgeranyl-L-glutathione, and the enzyme gamma-glutamyltransferase-5, which metabolizes S-geranylgeranyl-L-glutathione to a form that does not activate the P2RY8 receptor, promote confinement of B-cells in germinal centers (357-359).

In 2009, two groups reported that in B-progenitor ALL a 300 kbp interstitial deletion within the pseudoautosomal region Xp22.33/Yp11.2 juxtaposed the first, noncoding exon of P2RY8 with the coding region of CRLF2 resulting in overexpression of CRLF2 (360, 361). The P2RY8-CRLF2 fusion was found in 5-7 % of patients with B-progenitor ALL but in more than 50 % of B-ALL patients with Down syndrome (360-365). The P2RY8-CRLF2 fusion could be both an early and a clearly secondary genomic event in B-ALL development, making its role in leukemogenesis all the more intriguing (363, 366, 367).

Conclusion

Although it may seem more likely that fusion genes or activated oncogenes are mainly caused by balanced genomic rearrangements, and although the early history of fusion gene detection in cancer apparently corroborated this view, we show here that interstitial chromosomal deletions are not an uncommon mechanism for the formation of similar fusion genes. Most of these deletions are below the detection level of chromosome banding methodologies and, hence, were detected using other techniques, including aCGH and high throughput sequencing. The detected interstitial deletions/fusion genes are not restricted to one or only a few chromosomes or a single type of cancer; instead, they have been found across almost the entire genome and in various neoplasias. Their detection has improved significantly our understanding of tumorigenesis and leukemogenesis and they are increasingly used for diagnosis and classification of neoplasms, prognostication, and as targets for molecular therapy. As more neoplasms are being analyzed, especially as high throughput sequencing is increasingly being relied on in laboratory diagnostic routines, even more such interstitial deletions/fusion genes are likely to be found, something that is going to have a significant impact both clinically and scientifically. The challenge in this context, however, is to apply proper verification/falsification measures to all new discoveries that will be made so that the field does not become swamped by data of questionable significance.

Acknowledgements

This work was supported by grants from Radiumhospitalets Legater.

Footnotes

  • Authors’ Contributions

    Both authors (IP and SH) wrote the manuscript.

  • This article is freely accessible online.

  • Conflicts of Interest

    The Authors declare that they have no potential conflicts of interest with regards to this study.

  • Received February 26, 2021.
  • Revision received March 15, 2021.
  • Accepted March 16, 2021.
  • Copyright© 2021, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved

References

  1. ↵
    1. Rabbitts TH
    : Chromosomal translocations in human cancer. Nature 372(6502): 143-149, 1994. PMID: 7969446. DOI: 10.1038/372143a0
    OpenUrlCrossRefPubMed
  2. ↵
    1. Rowley JD
    : The critical role of chromosome translocations in human leukemias. Annu Rev Genet 32: 495-519, 1998. PMID: 9928489. DOI: 10.1146/annurev.genet.32.1.495
    OpenUrlCrossRefPubMed
    1. Mitelman F,
    2. Johansson B and
    3. Mertens F
    : The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7(4): 233-245, 2007. PMID: 17361217. DOI: 10.1038/nrc2091
    OpenUrlCrossRefPubMed
    1. Edwards PA
    : Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol 220(2): 244-254, 2010. PMID: 19921709. DOI: 10.1002/path.2632
    OpenUrlCrossRefPubMed
  3. ↵
    1. Zheng J
    : Oncogenic chromosomal translocations and human cancer (review). Oncol Rep 30(5): 2011-2019, 2013. PMID: 23970180. DOI: 10.3892/or.2013.2677
    OpenUrlCrossRefPubMed
  4. ↵
    1. Reshmi SC,
    2. Harvey RC,
    3. Roberts KG,
    4. Stonerock E,
    5. Smith A,
    6. Jenkins H,
    7. Chen IM,
    8. Valentine M,
    9. Liu Y,
    10. Li Y,
    11. Shao Y,
    12. Easton J,
    13. Payne-Turner D,
    14. Gu Z,
    15. Tran TH,
    16. Nguyen JV,
    17. Devidas M,
    18. Dai Y,
    19. Heerema NA,
    20. Carroll AJ 3rd.,
    21. Raetz EA,
    22. Borowitz MJ,
    23. Wood BL,
    24. Angiolillo AL,
    25. Burke MJ,
    26. Salzer WL,
    27. Zweidler-McKay PA,
    28. Rabin KR,
    29. Carroll WL,
    30. Zhang J,
    31. Loh ML,
    32. Mullighan CG,
    33. Willman CL,
    34. Gastier-Foster JM and
    35. Hunger SP
    : Targetable kinase gene fusions in high-risk B-ALL: A study from the children’s oncology group. Blood 129(25): 3352-3361, 2017. PMID: 28408464. DOI: 10.1182/blood-2016-12-758979
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Xiao X,
    2. Garbutt CC,
    3. Hornicek F,
    4. Guo Z and
    5. Duan Z
    : Advances in chromosomal translocations and fusion genes in sarcomas and potential therapeutic applications. Cancer Treat Rev 63: 61-70, 2018. PMID: 29247978. DOI: 10.1016/j.ctrv.2017.12.001
    OpenUrlCrossRefPubMed
  6. ↵
    1. Matsukawa T and
    2. Aplan PD
    : Clinical and molecular consequences of fusion genes in myeloid malignancies. Stem Cells 38(11): 1366-1374, 2020. PMID: 32745287. DOI: 10.1002/stem.3263
    OpenUrlCrossRef
  7. ↵
    1. Pederzoli F,
    2. Bandini M,
    3. Marandino L,
    4. Ali SM,
    5. Madison R,
    6. Chung J,
    7. Ross JS and
    8. Necchi A
    : Targetable gene fusions and aberrations in genitourinary oncology. Nat Rev Urol 17(11): 613-625, 2020. PMID: 33046892. DOI: 10.1038/s41585-020-00379-4
    OpenUrlCrossRef
  8. ↵
    1. Mitelman F,
    2. Johansson B and
    3. Mertens F
    : Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet 36(4): 331-334, 2004. PMID: 15054488. DOI: 10.1038/ng1335
    OpenUrlCrossRefPubMed
  9. ↵
    1. Heim S and
    2. Mitelman F
    : Cancer cytogenetics: Chromosomal and molecular genetic abberations of tumor cells. Fourth edition edn. Wiley-Blackwell, 2015.
  10. ↵
    1. Mitelman F,
    2. Johansson B and
    3. Mertens F
    : Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer, 2021. Available at: https://mitelmandatabase.isb-cgc.org/ [Last accessed on March 16, 2021]
  11. ↵
    1. Johansson B,
    2. Mertens F,
    3. Schyman T,
    4. Björk J,
    5. Mandahl N and
    6. Mitelman F
    : Most gene fusions in cancer are stochastic events. Genes Chromosomes Cancer 58(9): 607-611, 2019. PMID: 30807681. DOI: 10.1002/gcc.22745
    OpenUrlCrossRefPubMed
  12. ↵
    1. Gauwerky CE and
    2. Croce CM
    : Chromosomal translocations in leukaemia. Semin Cancer Biol 4(6): 333-340, 1993. PMID: 8142618.
    OpenUrlPubMed
    1. Hunger SP and
    2. Cleary ML
    : Chimaeric oncoproteins resulting from chromosomal translocations in acute lymphoblastic leukaemia. Semin Cancer Biol 4(6): 387-399, 1993. PMID: 8142624.
    OpenUrlPubMed
    1. Ladanyi M
    : The emerging molecular genetics of sarcoma translocations. Diagn Mol Pathol 4(3): 162-173, 1995. PMID: 7493135. DOI: 10.1097/00019606-199509000-00003
    OpenUrlCrossRefPubMed
  13. ↵
    1. Brenner JC and
    2. Chinnaiyan AM
    : Translocations in epithelial cancers. Biochim Biophys Acta 1796(2): 201-215, 2009. PMID: 19406209. DOI: 10.1016/j.bbcan.2009.04.005
    OpenUrlCrossRefPubMed
  14. ↵
    1. Nowell PC and
    2. Croce CM
    : Chromosomal approaches to oncogenes and oncogenesis. FASEB J 2(15): 3054-3060, 1988. PMID: 3056765. DOI: 10.1096/fasebj.2.15.3056765
    OpenUrlCrossRefPubMed
    1. Dong JT
    : Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev 20(3-4): 173-193, 2001. PMID: 12085961. DOI: 10.1023/a:1015575125780
    OpenUrlCrossRefPubMed
  15. ↵
    1. Chen M,
    2. Yang Y,
    3. Liu Y and
    4. Chen C
    : The role of chromosome deletions in human cancers. Adv Exp Med Biol 1044: 135-148, 2018. PMID: 29956295. DOI: 10.1007/978-981-13-0593-1_9
    OpenUrlCrossRef
  16. ↵
    1. Francke U and
    2. Kung F
    : Sporadic bilateral retinoblastoma and 13q-chromosomal deletion. Med Pediatr Oncol 2(4): 379-385, 1976. PMID: 1004381. DOI: 10.1002/mpo.2950020404
    OpenUrlCrossRefPubMed
    1. Knudson AG Jr.,
    2. Meadows AT,
    3. Nichols WW and
    4. Hill R
    : Chromosomal deletion and retinoblastoma. N Engl J Med 295(20): 1120-1123, 1976. PMID: 980006. DOI: 10.1056/NEJM197611112952007
    OpenUrlCrossRefPubMed
    1. Noel B,
    2. Quack B and
    3. Rethore MO
    : Partial deletions and trisomies of chromosome 13; Mapping of bands associated with particular malformations. Clin Genet 9(6): 593-602, 1976. PMID: 1277571. DOI: 10.1111/j.1399-0004.1976.tb01618.x
    OpenUrlCrossRefPubMed
    1. Benedict WF,
    2. Murphree AL,
    3. Banerjee A,
    4. Spina CA,
    5. Sparkes MC and
    6. Sparkes RS
    : Patient with 13 chromosome deletion: Evidence that the retinoblastoma gene is a recessive cancer gene. Science 219(4587): 973-975, 1983. PMID: 6336308. DOI: 10.1126/science.6336308
    OpenUrlAbstract/FREE Full Text
    1. Dryja TP,
    2. Friend S and
    3. Weinberg RA
    : Genetic sequences that predispose to retinoblastoma and osteosarcoma. Symp Fundam Cancer Res 39: 115-119, 1986. PMID: 3480547.
    OpenUrlPubMed
    1. Friend SH,
    2. Bernards R,
    3. Rogelj S,
    4. Weinberg RA,
    5. Rapaport JM,
    6. Albert DM and
    7. Dryja TP
    : A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089): 643-646, 1986. PMID: 2877398. DOI: 10.1038/323643a0
    OpenUrlCrossRefPubMed
  17. ↵
    1. Sherr CJ
    : Principles of tumor suppression. Cell 116(2): 235-246, 2004. PMID: 14744434. DOI: 10.1016/s0092-8674(03)01075-4
    OpenUrlCrossRefPubMed
  18. ↵
    1. Kamb A,
    2. Gruis NA,
    3. Weaver-Feldhaus J,
    4. Liu Q,
    5. Harshman K,
    6. Tavtigian SV,
    7. Stockert E,
    8. Day RS 3rd.,
    9. Johnson BE and
    10. Skolnick MH
    : A cell cycle regulator potentially involved in genesis of many tumor types. Science 264(5157): 436-440, 1994. PMID: 8153634. DOI: 10.1126/science.8153634
    OpenUrlAbstract/FREE Full Text
    1. Nobori T,
    2. Miura K,
    3. Wu DJ,
    4. Lois A,
    5. Takabayashi K and
    6. Carson DA
    : Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368(6473): 753-756, 1994. PMID: 8152487. DOI: 10.1038/368753a0
    OpenUrlCrossRefPubMed
    1. Sasaki S,
    2. Kitagawa Y,
    3. Sekido Y,
    4. Minna JD,
    5. Kuwano H,
    6. Yokota J and
    7. Kohno T
    : Molecular processes of chromosome 9p21 deletions in human cancers. Oncogene 22(24): 3792-3798, 2003. PMID: 12802286. DOI: 10.1038/sj.onc.1206589
    OpenUrlCrossRefPubMed
  19. ↵
    1. Kohno T and
    2. Yokota J
    : Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: Deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 5(9-10): 1273-1281, 2006. PMID: 16931177. DOI: 10.1016/j.dnarep.2006.05.021
    OpenUrlCrossRefPubMed
  20. ↵
    1. Fero ML,
    2. Randel E,
    3. Gurley KE,
    4. Roberts JM and
    5. Kemp CJ
    : The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396(6707): 177-180, 1998. PMID: 9823898. DOI: 10.1038/24179
    OpenUrlCrossRefPubMed
    1. Quon KC and
    2. Berns A
    : Haplo-insufficiency? Let me count the ways. Genes Dev 15(22): 2917-2921, 2001. PMID: 11711426. DOI: 10.1101/gad.949001
    OpenUrlFREE Full Text
  21. ↵
    1. Johnson AF,
    2. Nguyen HT and
    3. Veitia RA
    : Causes and effects of haploinsufficiency. Biol Rev Camb Philos Soc 94(5): 1774-1785, 2019. PMID: 31149781. DOI: 10.1111/brv.12527
    OpenUrlCrossRef
  22. ↵
    1. Maher CA,
    2. Kumar-Sinha C,
    3. Cao X,
    4. Kalyana-Sundaram S,
    5. Han B,
    6. Jing X,
    7. Sam L,
    8. Barrette T,
    9. Palanisamy N and
    10. Chinnaiyan AM
    : Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234): 97-101, 2009. PMID: 19136943. DOI: 10.1038/nature07638
    OpenUrlCrossRefPubMed
    1. Kumar S,
    2. Razzaq SK,
    3. Vo AD,
    4. Gautam M and
    5. Li H
    : Identifying fusion transcripts using next generation sequencing. Wiley Interdiscip Rev RNA 7(6): 811-823, 2016. PMID: 27485475. DOI: 10.1002/wrna.1382
    OpenUrlCrossRefPubMed
    1. McLeer-Florin A,
    2. Duruisseaux M,
    3. Pinsolle J,
    4. Dubourd S,
    5. Mondet J,
    6. Phillips Houlbracq M,
    7. Magnat N,
    8. Fauré J,
    9. Chatagnon A,
    10. de Fraipont F,
    11. Giaj Levra M,
    12. Toffart AC,
    13. Ferretti G,
    14. Hainaut P,
    15. Brambilla E,
    16. Moro-Sibilot D and
    17. Lantuejoul S
    : ALK fusion variants detection by targeted RNA-next generation sequencing and clinical responses to crizotinib in ALK-positive non-small cell lung cancer. Lung Cancer 116: 15-24, 2018. PMID: 29413046. DOI: 10.1016/j.lungcan.2017.12.004
    OpenUrlCrossRefPubMed
    1. Heyer EE,
    2. Deveson IW,
    3. Wooi D,
    4. Selinger CI,
    5. Lyons RJ,
    6. Hayes VM,
    7. O’Toole SA,
    8. Ballinger ML,
    9. Gill D,
    10. Thomas DM,
    11. Mercer TR and
    12. Blackburn J
    : Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun 10(1): 1388, 2019. PMID: 30918253. DOI: 10.1038/s41467-019-09374-9
    OpenUrlCrossRefPubMed
  23. ↵
    1. Avenarius MR,
    2. Miller CR,
    3. Arnold MA,
    4. Koo S,
    5. Roberts R,
    6. Hobby M,
    7. Grossman T,
    8. Moyer Y,
    9. Wilson RK,
    10. Mardis ER,
    11. Gastier-Foster JM and
    12. Pfau RB
    : Genetic characterization of pediatric sarcomas by targeted RNA sequencing. J Mol Diagn 22(10): 1238-1245, 2020. PMID: 32745614. DOI: 10.1016/j.jmoldx.2020.07.004
    OpenUrlCrossRefPubMed
  24. ↵
    1. Arias-Stella JA 3rd.,
    2. Benayed R,
    3. Oliva E,
    4. Young RH,
    5. Hoang LN,
    6. Lee CH,
    7. Jungbluth AA,
    8. Frosina D,
    9. Soslow RA,
    10. Antonescu CR,
    11. Ladanyi M and
    12. Chiang S
    : Novel PLAG1 gene rearrangement distinguishes a subset of uterine myxoid leiomyosarcoma from other uterine myxoid mesenchymal tumors. Am J Surg Pathol 43(3): 382-388, 2019. PMID: 30489320. DOI: 10.1097/PAS.0000000000001196
    OpenUrlCrossRefPubMed
  25. ↵
    1. Zhu G,
    2. Benayed R,
    3. Ho C,
    4. Mullaney K,
    5. Sukhadia P,
    6. Rios K,
    7. Berry R,
    8. Rubin BP,
    9. Nafa K,
    10. Wang L,
    11. Klimstra DS,
    12. Ladanyi M and
    13. Hameed MR
    : Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Mod Pathol 32(5): 609-620, 2019. PMID: 30459475. DOI: 10.1038/s41379-018-0175-7
    OpenUrlCrossRefPubMed
  26. ↵
    1. Panagopoulos I,
    2. Gorunova L,
    3. Andersen K,
    4. Lund-Iversen M,
    5. Lobmaier I,
    6. Micci F and
    7. Heim S
    : NDRG1-PLAG1 and TRPS1-PLAG1 fusion genes in chondroid syringoma. Cancer Genomics Proteomics 17(3): 237-248, 2020. PMID: 32345665. DOI: 10.21873/cgp.20184
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Akiva P,
    2. Toporik A,
    3. Edelheit S,
    4. Peretz Y,
    5. Diber A,
    6. Shemesh R,
    7. Novik A and
    8. Sorek R
    : Transcription-mediated gene fusion in the human genome. Genome Res 16(1): 30-36, 2006. PMID: 16344562. DOI: 10.1101/gr.4137606
    OpenUrlAbstract/FREE Full Text
    1. Parra G,
    2. Reymond A,
    3. Dabbouseh N,
    4. Dermitzakis ET,
    5. Castelo R,
    6. Thomson TM,
    7. Antonarakis SE and
    8. Guigó R
    : Tandem chimerism as a means to increase protein complexity in the human genome. Genome Res 16(1): 37-44, 2006. PMID: 16344564. DOI: 10.1101/gr.4145906
    OpenUrlAbstract/FREE Full Text
    1. Greger L,
    2. Su J,
    3. Rung J,
    4. Ferreira PG, Geuvadis consortium.,
    5. Lappalainen T,
    6. Dermitzakis ET and
    7. Brazma A
    : Tandem RNA chimeras contribute to transcriptome diversity in human population and are associated with intronic genetic variants. PLoS One 9(8): e104567, 2014. PMID: 25133550. DOI: 10.1371/journal.pone.0104567
    OpenUrlCrossRef
  28. ↵
    1. Ren G,
    2. Zhang Y,
    3. Mao X,
    4. Liu X,
    5. Mercer E,
    6. Marzec J,
    7. Ding D,
    8. Jiao Y,
    9. Qiu Q,
    10. Sun Y,
    11. Zhang B,
    12. Yeste-Velasco M,
    13. Chelala C,
    14. Berney D and
    15. Lu YJ
    : Transcription-mediated chimeric RNAs in prostate cancer: Time to revisit old hypothesis? OMICS 18(10): 615-624, 2014. PMID: 25188740. DOI: 10.1089/omi.2014.0042
    OpenUrlCrossRefPubMed
  29. ↵
    1. Barresi V,
    2. Cosentini I,
    3. Scuderi C,
    4. Napoli S,
    5. Di Bella V,
    6. Spampinato G and
    7. Condorelli DF
    : Fusion transcripts of adjacent genes: New insights into the world of human complex transcripts in cancer. Int J Mol Sci 20(21):5252, 2019. PMID: 31652751. DOI: 10.3390/ijms20215252
    OpenUrlCrossRef
  30. ↵
    1. Lu G,
    2. Wu J,
    3. Zhao G,
    4. Wang Z,
    5. Chen W and
    6. Mu S
    : Abundant and broad expression of transcription-induced chimeras and protein products in mammalian genomes. Biochem Biophys Res Commun 470(3): 759-765, 2016. PMID: 26718406. DOI: 10.1016/j.bbrc.2015.12.084
    OpenUrlCrossRef
    1. Prakash T,
    2. Sharma VK,
    3. Adati N,
    4. Ozawa R,
    5. Kumar N,
    6. Nishida Y,
    7. Fujikake T,
    8. Takeda T and
    9. Taylor TD
    : Expression of conjoined genes: Another mechanism for gene regulation in eukaryotes. PLoS One 5(10): e13284, 2010. PMID: 20967262. DOI: 10.1371/journal.pone.0013284
    OpenUrlCrossRefPubMed
  31. ↵
    1. He Y,
    2. Yuan C,
    3. Chen L,
    4. Lei M,
    5. Zellmer L,
    6. Huang H and
    7. Liao DJ
    : Transcriptional-readthrough RNAs reflect the phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the Human Genome, and thus are not chimeric RNAs. Genes (Basel) 9(1):40, 2018. PMID: 29337901. DOI: 10.3390/genes9010040
    OpenUrlCrossRef
  32. ↵
    1. Rickman DS,
    2. Pflueger D,
    3. Moss B,
    4. VanDoren VE,
    5. Chen CX,
    6. de la Taille A,
    7. Kuefer R,
    8. Tewari AK,
    9. Setlur SR,
    10. Demichelis F and
    11. Rubin MA
    : SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 69(7): 2734-2738, 2009. PMID: 19293179. DOI: 10.1158/0008-5472.CAN-08-4926
    OpenUrlAbstract/FREE Full Text
    1. Kumar-Sinha C,
    2. Kalyana-Sundaram S and
    3. Chinnaiyan AM
    : SLC45A3-ELK4 chimera in prostate cancer: Spotlight on cis-splicing. Cancer Discov 2(7): 582-585, 2012. PMID: 22787087. DOI: 10.1158/2159-8290.CD-12-0212
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Zhang Y,
    2. Gong M,
    3. Yuan H,
    4. Park HG,
    5. Frierson HF and
    6. Li H
    : Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov 2(7): 598-607, 2012. PMID: 22719019. DOI: 10.1158/2159-8290.CD-12-0042
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Vulprecht J,
    2. David A,
    3. Tibelius A,
    4. Castiel A,
    5. Konotop G,
    6. Liu F,
    7. Bestvater F,
    8. Raab MS,
    9. Zentgraf H,
    10. Izraeli S and
    11. Krämer A
    : STIL is required for centriole duplication in human cells. J Cell Sci 125(Pt 5): 1353-1362, 2012. PMID: 22349705. DOI: 10.1242/jcs.104109
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Hsu HL,
    2. Huang L,
    3. Tsan JT,
    4. Funk W,
    5. Wright WE,
    6. Hu JS,
    7. Kingston RE and
    8. Baer R
    : Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol Cell Biol 14(2): 1256-1265, 1994. PMID: 8289805. DOI: 10.1128/mcb.14.2.1256
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Aplan PD,
    2. Lombardi DP,
    3. Ginsberg AM,
    4. Cossman J,
    5. Bertness VL and
    6. Kirsch IR
    : Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 250(4986): 1426-1429, 1990. PMID: 2255914. DOI: 10.1126/science.2255914
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Brown L,
    2. Cheng JT,
    3. Chen Q,
    4. Siciliano MJ,
    5. Crist W,
    6. Buchanan G and
    7. Baer R
    : Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 9(10): 3343-3351, 1990. PMID: 2209547.
    OpenUrlCrossRefPubMed
  38. ↵
    1. Chopra A,
    2. Soni S,
    3. Verma D,
    4. Kumar D,
    5. Dwivedi R,
    6. Vishwanathan A,
    7. Vishwakama G,
    8. Bakhshi S,
    9. Seth R,
    10. Gogia A,
    11. Kumar L and
    12. Kumar R
    : Prevalence of common fusion transcripts in acute lymphoblastic leukemia: A report of 304 cases. Asia Pac J Clin Oncol 11(4): 293-298, 2015. PMID: 26264145. DOI: 10.1111/ajco.12400
    OpenUrlCrossRef
  39. ↵
    1. D’Angiò M,
    2. Valsecchi MG,
    3. Testi AM,
    4. Conter V,
    5. Nunes V,
    6. Parasole R,
    7. Colombini A,
    8. Santoro N,
    9. Varotto S,
    10. Caniglia M,
    11. Silvestri D,
    12. Consarino C,
    13. Levati L,
    14. Magrin E,
    15. Locatelli F,
    16. Basso G,
    17. Foà R,
    18. Biondi A and
    19. Cazzaniga G
    : Clinical features and outcome of SIL/TAL1-positive T-cell acute lymphoblastic leukemia in children and adolescents: A 10-year experience of the AIEOP group. Haematologica 100(1): e10-e13, 2015. PMID: 25304610. DOI: 10.3324/haematol.2014.112151
    OpenUrlFREE Full Text
  40. ↵
    1. Liu Y,
    2. Easton J,
    3. Shao Y,
    4. Maciaszek J,
    5. Wang Z,
    6. Wilkinson MR,
    7. McCastlain K,
    8. Edmonson M,
    9. Pounds SB,
    10. Shi L,
    11. Zhou X,
    12. Ma X,
    13. Sioson E,
    14. Li Y,
    15. Rusch M,
    16. Gupta P,
    17. Pei D,
    18. Cheng C,
    19. Smith MA,
    20. Auvil JG,
    21. Gerhard DS,
    22. Relling MV,
    23. Winick NJ,
    24. Carroll AJ,
    25. Heerema NA,
    26. Raetz E,
    27. Devidas M,
    28. Willman CL,
    29. Harvey RC,
    30. Carroll WL,
    31. Dunsmore KP,
    32. Winter SS,
    33. Wood BL,
    34. Sorrentino BP,
    35. Downing JR,
    36. Loh ML,
    37. Hunger SP,
    38. Zhang J and
    39. Mullighan CG
    : The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49(8): 1211-1218, 2017. PMID: 28671688. DOI: 10.1038/ng.3909
    OpenUrlCrossRefPubMed
  41. ↵
    1. Bash RO,
    2. Crist WM,
    3. Shuster JJ,
    4. Link MP,
    5. Amylon M,
    6. Pullen J,
    7. Carroll AJ,
    8. Buchanan GR,
    9. Smith RG and
    10. Baer R
    : Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: A Pediatric Oncology Group study. Blood 81(8): 2110-2117, 1993. PMID: 8471769.
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Wang D,
    2. Zhu G,
    3. Wang N,
    4. Zhou X,
    5. Yang Y,
    6. Zhou S,
    7. Xiong J,
    8. He J,
    9. Jiang L,
    10. Li C,
    11. Xu D,
    12. Huang L and
    13. Zhou J
    : SIL-TAL1 rearrangement is related with poor outcome: A study from a Chinese institution. PLoS One 8(9): e73865, 2013. PMID: 24040098. DOI: 10.1371/journal.pone.0073865
    OpenUrlCrossRef
    1. Ballerini P,
    2. Landman-Parker J,
    3. Cayuela JM,
    4. Asnafi V,
    5. Labopin M,
    6. Gandemer V,
    7. Perel Y,
    8. Michel G,
    9. Leblanc T,
    10. Schmitt C,
    11. Fasola S,
    12. Hagemejier A,
    13. Sigaux F,
    14. Auclerc MF,
    15. Douay L,
    16. Leverger G and
    17. Baruchel A
    : Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: The effect of TLX3/HOX11L2 gene expression on outcome. Haematologica 93(11): 1658-1665, 2008. PMID: 18835836. DOI: 10.3324/haematol.13291
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Mansur MB,
    2. Emerenciano M,
    3. Brewer L,
    4. Sant’Ana M,
    5. Mendonça N,
    6. Thuler LC,
    7. Koifman S and
    8. Pombo-de-Oliveira MS
    : SIL-TAL1 fusion gene negative impact in T-cell acute lymphoblastic leukemia outcome. Leuk Lymphoma 50(8): 1318-1325, 2009. PMID: 19562638. DOI: 10.1080/10428190903040014
    OpenUrlCrossRefPubMed
  44. ↵
    1. Kelliher MA,
    2. Seldin DC and
    3. Leder P
    : Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J 15(19): 5160-5166, 1996. PMID: 8895560.
    OpenUrlPubMed
  45. ↵
    1. Tremblay M,
    2. Tremblay CS,
    3. Herblot S,
    4. Aplan PD,
    5. Hébert J,
    6. Perreault C and
    7. Hoang T
    : Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 24(11): 1093-1105, 2010. PMID: 20516195. DOI: 10.1101/gad.1897910
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Wiesner T,
    2. He J,
    3. Yelensky R,
    4. Esteve-Puig R,
    5. Botton T,
    6. Yeh I,
    7. Lipson D,
    8. Otto G,
    9. Brennan K,
    10. Murali R,
    11. Garrido M,
    12. Miller VA,
    13. Ross JS,
    14. Berger MF,
    15. Sparatta A,
    16. Palmedo G,
    17. Cerroni L,
    18. Busam KJ,
    19. Kutzner H,
    20. Cronin MT,
    21. Stephens PJ and
    22. Bastian BC
    : Kinase fusions are frequent in spitz tumours and spitzoid melanomas. Nat Commun 5: 3116, 2014. PMID: 24445538. DOI: 10.1038/ncomms4116
    OpenUrlCrossRefPubMed
  47. ↵
    1. Agaram NP,
    2. Zhang L,
    3. Sung YS,
    4. Chen CL,
    5. Chung CT,
    6. Antonescu CR and
    7. Fletcher CD
    : Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol 40(10): 1407-1416, 2016. PMID: 27259011. DOI: 10.1097/PAS.0000000000000675
    OpenUrlCrossRefPubMed
    1. Haller F,
    2. Knopf J,
    3. Ackermann A,
    4. Bieg M,
    5. Kleinheinz K,
    6. Schlesner M,
    7. Moskalev EA,
    8. Will R,
    9. Satir AA,
    10. Abdelmagid IE,
    11. Giedl J,
    12. Carbon R,
    13. Rompel O,
    14. Hartmann A,
    15. Wiemann S,
    16. Metzler M and
    17. Agaimy A
    : Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: A subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol 238(5): 700-710, 2016. PMID: 26863915. DOI: 10.1002/path.4701
    OpenUrlCrossRefPubMed
    1. Park DY,
    2. Choi C,
    3. Shin E,
    4. Lee JH,
    5. Kwon CH,
    6. Jo HJ,
    7. Kim HR,
    8. Kim HS,
    9. Oh N,
    10. Lee JS,
    11. Park OK,
    12. Park E,
    13. Park J,
    14. Shin JY,
    15. Kim JI,
    16. Seo JS,
    17. Park HD and
    18. Park J
    : NTRK1 fusions for the therapeutic intervention of Korean patients with colon cancer. Oncotarget 7(7): 8399-8412, 2016. PMID: 26716414. DOI: 10.18632/oncotarget.6724
    OpenUrlCrossRef
  48. ↵
    1. Sartore-Bianchi A,
    2. Ardini E,
    3. Bosotti R,
    4. Amatu A,
    5. Valtorta E,
    6. Somaschini A,
    7. Raddrizzani L,
    8. Palmeri L,
    9. Banfi P,
    10. Bonazzina E,
    11. Misale S,
    12. Marrapese G,
    13. Leone A,
    14. Alzani R,
    15. Luo D,
    16. Hornby Z,
    17. Lim J,
    18. Veronese S,
    19. Vanzulli A,
    20. Bardelli A,
    21. Martignoni M,
    22. Davite C,
    23. Galvani A,
    24. Isacchi A and
    25. Siena S
    : Sensitivity to entrectinib associated with a novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer. J Natl Cancer Inst 108(1):, 2015. PMID: 26563355. DOI: 10.1093/jnci/djv306
    OpenUrlCrossRefPubMed
  49. ↵
    1. Wong V,
    2. Pavlick D,
    3. Brennan T,
    4. Yelensky R,
    5. Crawford J,
    6. Ross JS,
    7. Miller VA,
    8. Malicki D,
    9. Stephens PJ,
    10. Ali SM and
    11. Ahn H
    : Evaluation of a congenital infantile fibrosarcoma by comprehensive genomic profiling reveals an LMNA-NTRK1 gene fusion responsive to crizotinib. J Natl Cancer Inst 108(1): 2015. PMID: 26563356. DOI: 10.1093/jnci/djv307
    OpenUrlCrossRefPubMed
    1. Pavlick D,
    2. Schrock AB,
    3. Malicki D,
    4. Stephens PJ,
    5. Kuo DJ,
    6. Ahn H,
    7. Turpin B,
    8. Allen JM,
    9. Rosenzweig M,
    10. Badizadegan K,
    11. Ross JS,
    12. Miller VA,
    13. Wong V and
    14. Ali SM
    : Identification of NTRK fusions in pediatric mesenchymal tumors. Pediatr Blood Cancer 64(8):, 2017. PMID: 28097808. DOI: 10.1002/pbc.26433
    OpenUrlCrossRef
    1. Chiang S,
    2. Cotzia P,
    3. Hyman DM,
    4. Drilon A,
    5. Tap WD,
    6. Zhang L,
    7. Hechtman JF,
    8. Frosina D,
    9. Jungbluth AA,
    10. Murali R,
    11. Park KJ,
    12. Soslow RA,
    13. Oliva E,
    14. Iafrate AJ,
    15. Benayed R,
    16. Ladanyi M and
    17. Antonescu CR
    : NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am J Surg Pathol 42(6): 791-798, 2018. PMID: 29553955. DOI: 10.1097/PAS.0000000000001055
    OpenUrlCrossRefPubMed
  50. ↵
    1. Gao Q,
    2. Liang WW,
    3. Foltz SM,
    4. Mutharasu G,
    5. Jayasinghe RG,
    6. Cao S,
    7. Liao WW,
    8. Reynolds SM,
    9. Wyczalkowski MA,
    10. Yao L,
    11. Yu L,
    12. Sun SQ, Fusion Analysis Working Group., Cancer Genome Atlas Research Network.,
    13. Chen K,
    14. Lazar AJ,
    15. Fields RC,
    16. Wendl MC,
    17. Van Tine BA,
    18. Vij R,
    19. Chen F,
    20. Nykter M,
    21. Shmulevich I and
    22. Ding L
    : Driver fusions and their implications in the development and treatment of human cancers. Cell Rep 23(1): 227-238.e3, 2018. PMID: 29617662. DOI: 10.1016/j.celrep.2018.03.050
    OpenUrlCrossRefPubMed
    1. Pozdeyev N,
    2. Gay LM,
    3. Sokol ES,
    4. Hartmaier R,
    5. Deaver KE,
    6. Davis S,
    7. French JD,
    8. Borre PV,
    9. LaBarbera DV,
    10. Tan AC,
    11. Schweppe RE,
    12. Fishbein L,
    13. Ross JS,
    14. Haugen BR and
    15. Bowles DW
    : Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res 24(13): 3059-3068, 2018. PMID: 29615459. DOI: 10.1158/1078-0432.CCR-18-0373
    OpenUrlAbstract/FREE Full Text
    1. Suurmeijer AJH,
    2. Dickson BC,
    3. Swanson D,
    4. Zhang L,
    5. Sung YS,
    6. Cotzia P,
    7. Fletcher CDM and
    8. Antonescu CR
    : A novel group of spindle cell tumors defined by S100 and CD34 co-expression shows recurrent fusions involving RAF1,s BRAF, and NTRK1/2 genes. Genes Chromosomes Cancer 57(12): 611-621, 2018. PMID: 30276917. DOI: 10.1002/gcc.22671
    OpenUrlCrossRefPubMed
    1. Wegert J,
    2. Vokuhl C,
    3. Collord G,
    4. Del Castillo Velasco-Herrera M,
    5. Farndon SJ,
    6. Guzzo C,
    7. Jorgensen M,
    8. Anderson J,
    9. Slater O,
    10. Duncan C,
    11. Bausenwein S,
    12. Streitenberger H,
    13. Ziegler B,
    14. Furtwängler R,
    15. Graf N,
    16. Stratton MR,
    17. Campbell PJ,
    18. Jones DT,
    19. Koelsche C,
    20. Pfister SM,
    21. Mifsud W,
    22. Sebire N,
    23. Sparber-Sauer M,
    24. Koscielniak E,
    25. Rosenwald A,
    26. Gessler M and
    27. Behjati S
    : Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat Commun 9(1): 2378, 2018. PMID: 29915264. DOI: 10.1038/s41467-018-04650-6
    OpenUrlCrossRef
  51. ↵
    1. Zhou N,
    2. Schäfer R,
    3. Li T,
    4. Fang M and
    5. Liu L
    : A primary undifferentiated pleomorphic sarcoma of the lumbosacral region harboring a LMNA-NTRK1 gene fusion with durable clinical response to crizotinib: A case report. BMC Cancer 18(1): 842, 2018. PMID: 30134855. DOI: 10.1186/s12885-018-4749-z
    OpenUrlCrossRef
  52. ↵
    1. Hsiao SJ,
    2. Zehir A,
    3. Sireci AN and
    4. Aisner DL
    : Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn 21(4): 553-571, 2019. PMID: 31075511. DOI: 10.1016/j.jmoldx.2019.03.008
    OpenUrlCrossRefPubMed
  53. ↵
    1. Doebele RC,
    2. Davis LE,
    3. Vaishnavi A,
    4. Le AT,
    5. Estrada-Bernal A,
    6. Keysar S,
    7. Jimeno A,
    8. Varella-Garcia M,
    9. Aisner DL,
    10. Li Y,
    11. Stephens PJ,
    12. Morosini D,
    13. Tuch BB,
    14. Fernandes M,
    15. Nanda N and
    16. Low JA
    : An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov 5(10): 1049-1057, 2015. PMID: 26216294. DOI: 10.1158/2159-8290.CD-15-0443
    OpenUrlAbstract/FREE Full Text
    1. Russo M,
    2. Misale S,
    3. Wei G,
    4. Siravegna G,
    5. Crisafulli G,
    6. Lazzari L,
    7. Corti G,
    8. Rospo G,
    9. Novara L,
    10. Mussolin B,
    11. Bartolini A,
    12. Cam N,
    13. Patel R,
    14. Yan S,
    15. Shoemaker R,
    16. Wild R,
    17. Di Nicolantonio F,
    18. Bianchi AS,
    19. Li G,
    20. Siena S and
    21. Bardelli A
    : Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov 6(1): 36-44, 2016. PMID: 26546295. DOI: 10.1158/2159-8290.CD-15-0940
    OpenUrlAbstract/FREE Full Text
    1. Bhangoo MS and
    2. Sigal D
    : TRK Inhibitors: Clinical development of larotrectinib. Curr Oncol Rep 21(2): 14, 2019. PMID: 30715603. DOI: 10.1007/s11912-019-0761-y
    OpenUrlCrossRef
    1. Dupuis M,
    2. Shen Y,
    3. Curcio C,
    4. Meis JM,
    5. Wang WL,
    6. Amini B,
    7. Rhines L,
    8. Reuther J,
    9. Roy A,
    10. Fisher KE,
    11. Conley AP and
    12. Andrew Livingston J
    : Successful treatment of lipofibromatosis-like neural tumor of the lumbar spine with an NTRK-fusion inhibitor. Clin Sarcoma Res 10: 14, 2020. PMID: 32782782. DOI: 10.1186/s13569-020-00136-6
    OpenUrlCrossRef
  54. ↵
    1. Walker A
    : Neurotrophic tyrosine kinase inhibitors: A review of implications for patients, clinicians and healthcare services. J Oncol Pharm Pract 26(8): 2015-2019, 2020. PMID: 32957860. DOI: 10.1177/1078155220959428
    OpenUrlCrossRef
  55. ↵
    1. Frattini V,
    2. Trifonov V,
    3. Chan JM,
    4. Castano A,
    5. Lia M,
    6. Abate F,
    7. Keir ST,
    8. Ji AX,
    9. Zoppoli P,
    10. Niola F,
    11. Danussi C,
    12. Dolgalev I,
    13. Porrati P,
    14. Pellegatta S,
    15. Heguy A,
    16. Gupta G,
    17. Pisapia DJ,
    18. Canoll P,
    19. Bruce JN,
    20. McLendon RE,
    21. Yan H,
    22. Aldape K,
    23. Finocchiaro G,
    24. Mikkelsen T,
    25. Privé GG,
    26. Bigner DD,
    27. Lasorella A,
    28. Rabadan R and
    29. Iavarone A
    : The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45(10): 1141-1149, 2013. PMID: 23917401. DOI: 10.1038/ng.2734
    OpenUrlCrossRefPubMed
  56. ↵
    1. Shah N,
    2. Lankerovich M,
    3. Lee H,
    4. Yoon JG,
    5. Schroeder B and
    6. Foltz G
    : Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genomics 14: 818, 2013. PMID: 24261984. DOI: 10.1186/1471-2164-14-818
    OpenUrlCrossRefPubMed
    1. Kim J,
    2. Lee Y,
    3. Cho HJ,
    4. Lee YE,
    5. An J,
    6. Cho GH,
    7. Ko YH,
    8. Joo KM and
    9. Nam DH
    : NTRK1 fusion in glioblastoma multiforme. PLoS One 9(3): e91940, 2014. PMID: 24647444. DOI: 10.1371/journal.pone.0091940
    OpenUrlCrossRefPubMed
  57. ↵
    1. Sigal DS,
    2. Bhangoo MS,
    3. Hermel JA,
    4. Pavlick DC,
    5. Frampton G,
    6. Miller VA,
    7. Ross JS and
    8. Ali SM
    : Comprehensive genomic profiling identifies novel NTRK fusions in neuroendocrine tumors. Oncotarget 9(88): 35809-35812, 2018. PMID: 30533196. DOI: 10.18632/oncotarget.26260
    OpenUrlCrossRefPubMed
  58. ↵
    1. Cook PJ,
    2. Thomas R,
    3. Kannan R,
    4. de Leon ES,
    5. Drilon A,
    6. Rosenblum MK,
    7. Scaltriti M,
    8. Benezra R and
    9. Ventura A
    : Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target. Nat Commun 8: 15987, 2017. PMID: 28695888. DOI: 10.1038/ncomms15987
    OpenUrlCrossRefPubMed
  59. ↵
    1. Burki TK
    : Larotrectinib in TRK fusion-positive cancers. Lancet Oncol 19(4): e187, 2018. PMID: 29503244. DOI: 10.1016/S1470-2045(18)30190-6
    OpenUrlCrossRef
    1. Drilon A,
    2. Laetsch TW,
    3. Kummar S,
    4. DuBois SG,
    5. Lassen UN,
    6. Demetri GD,
    7. Nathenson M,
    8. Doebele RC,
    9. Farago AF,
    10. Pappo AS,
    11. Turpin B,
    12. Dowlati A,
    13. Brose MS,
    14. Mascarenhas L,
    15. Federman N,
    16. Berlin J,
    17. El-Deiry WS,
    18. Baik C,
    19. Deeken J,
    20. Boni V,
    21. Nagasubramanian R,
    22. Taylor M,
    23. Rudzinski ER,
    24. Meric-Bernstam F,
    25. Sohal DPS,
    26. Ma PC,
    27. Raez LE,
    28. Hechtman JF,
    29. Benayed R,
    30. Ladanyi M,
    31. Tuch BB,
    32. Ebata K,
    33. Cruickshank S,
    34. Ku NC,
    35. Cox MC,
    36. Hawkins DS,
    37. Hong DS and
    38. Hyman DM
    : Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8): 731-739, 2018. PMID: 29466156. DOI: 10.1056/NEJMoa1714448
    OpenUrlCrossRefPubMed
    1. Kheder ES and
    2. Hong DS
    : Emerging targeted therapy for tumors with NTRK fusion proteins. Clin Cancer Res 24(23): 5807-5814, 2018. PMID: 29986850. DOI: 10.1158/1078-0432.CCR-18-1156
    OpenUrlAbstract/FREE Full Text
    1. Gambella A,
    2. Senetta R,
    3. Collemi G,
    4. Vallero SG,
    5. Monticelli M,
    6. Cofano F,
    7. Zeppa P,
    8. Garbossa D,
    9. Pellerino A,
    10. Rudà R,
    11. Soffietti R,
    12. Fagioli F,
    13. Papotti M,
    14. Cassoni P and
    15. Bertero L
    : NTRK fusions in central nervous system tumors: A rare, but worthy target. Int J Mol Sci 21(3):753, 2020. PMID: 31979374. DOI: 10.3390/ijms21030753
    OpenUrlCrossRefPubMed
  60. ↵
    1. Marcus L,
    2. Donoghue M,
    3. Aungst S,
    4. Myers CE,
    5. Helms WS,
    6. Shen G,
    7. Zhao H,
    8. Stephens O,
    9. Keegan P and
    10. Pazdur R
    : FDA approval summary: Entrectinib for the treatment of NTRK gene fusion solid tumors. Clin Cancer Res 27(4): 928-932, 2021. PMID: 32967940. DOI: 10.1158/1078-0432.CCR-20-2771
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Olsen TK,
    2. Panagopoulos I,
    3. Meling TR,
    4. Micci F,
    5. Gorunova L,
    6. Thorsen J,
    7. Due-Tønnessen B,
    8. Scheie D,
    9. Lund-Iversen M,
    10. Krossnes B,
    11. Saxhaug C,
    12. Heim S and
    13. Brandal P
    : Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: A new brain tumor entity? Neuro Oncol 17(10): 1365-1373, 2015. PMID: 25795305. DOI: 10.1093/neuonc/nov039
    OpenUrlCrossRefPubMed
  62. ↵
    1. Shimada Y,
    2. Kohno T,
    3. Ueno H,
    4. Ino Y,
    5. Hayashi H,
    6. Nakaoku T,
    7. Sakamoto Y,
    8. Kondo S,
    9. Morizane C,
    10. Shimada K,
    11. Okusaka T and
    12. Hiraoka N
    : An oncogenic ALK fusion and an RRAS mutation in KRAS mutation-negative pancreatic ductal adenocarcinoma. Oncologist 22(2): 158-164, 2017. PMID: 28167572. DOI: 10.1634/theoncologist.2016-0194
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Subbiah V,
    2. McMahon C,
    3. Patel S,
    4. Zinner R,
    5. Silva EG,
    6. Elvin JA,
    7. Subbiah IM,
    8. Ohaji C,
    9. Ganeshan DM,
    10. Anand D,
    11. Levenback CF,
    12. Berry J,
    13. Brennan T,
    14. Chmielecki J,
    15. Chalmers ZR,
    16. Mayfield J,
    17. Miller VA,
    18. Stephens PJ,
    19. Ross JS and
    20. Ali SM
    : STUMP un”stumped”: Anti-tumor response to anaplastic lymphoma kinase (ALK) inhibitor based targeted therapy in uterine inflammatory myofibroblastic tumor with myxoid features harboring DCTN1-ALK fusion. J Hematol Oncol 8: 66, 2015. PMID: 26062823. DOI: 10.1186/s13045-015-0160-2
    OpenUrlCrossRef
  64. ↵
    1. Ji JH,
    2. Oh YL,
    3. Hong M,
    4. Yun JW,
    5. Lee HW,
    6. Kim D,
    7. Ji Y,
    8. Kim DH,
    9. Park WY,
    10. Shin HT,
    11. Kim KM,
    12. Ahn MJ,
    13. Park K and
    14. Sun JM
    : Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet 11(8): e1005467, 2015. PMID: 26295973. DOI: 10.1371/journal.pgen.1005467
    OpenUrlCrossRefPubMed
  65. ↵
    1. He Z,
    2. Wu X,
    3. Ma S,
    4. Zhang C,
    5. Zhang Z,
    6. Wang S,
    7. Yu S and
    8. Wang Q
    : Next-generation sequencing identified a novel WDPCP-ALK fusion sensitive to crizotinib in lung adenocarcinoma. Clin Lung Cancer 20(5): e548-e551, 2019. PMID: 31281052. DOI: 10.1016/j.cllc.2019.06.001
    OpenUrlCrossRef
  66. ↵
    1. Qin BD,
    2. Jiao XD,
    3. Liu K,
    4. Wu Y and
    5. Zang YS
    : Identification of a novel EML4-ALK, BCL11A-ALK double-fusion variant in lung adenocarcinoma using next-generation sequencing and response to crizotinib. J Thorac Oncol 14(6): e115-e117, 2019. PMID: 31122560. DOI: 10.1016/j.jtho.2019.01.032
    OpenUrlCrossRef
  67. ↵
    1. Tian Q,
    2. Deng WJ and
    3. Li ZW
    : Identification of a novel crizotinib-sensitive BCL11A-ALK gene fusion in a nonsmall cell lung cancer patient. Eur Respir J 49(4): 2017. PMID: 28404650. DOI: 10.1183/13993003.02149-2016
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Chen Y,
    2. Zhang X,
    3. Jiang Q,
    4. Wang B,
    5. Wang Y and
    6. Junrong Y
    : Lung adenocarcinoma with a novel SRBD1-ALK fusion responding to crizotinib. Lung Cancer 146: 370-372, 2020. PMID: 32527613. DOI: 10.1016/j.lungcan.2020.04.031
    OpenUrlCrossRef
  69. ↵
    1. Hou X,
    2. Xu H and
    3. Chen L
    : SRBD1-ALK, a novel ALK fusion gene identified in an adenocarcinoma patient by next-generation sequencing. J Thorac Oncol 14(4): e72-e73, 2019. PMID: 30922581. DOI: 10.1016/j.jtho.2018.11.027
    OpenUrlCrossRef
  70. ↵
    1. Su C,
    2. Jiang Y,
    3. Jiang W,
    4. Wang H,
    5. Liu S,
    6. Shao Y,
    7. Zhao W,
    8. Ning R and
    9. Yu Q
    : STRN-ALK fusion in lung adenocarcinoma with excellent response upon alectinib treatment: A case report and literature review. Onco Targets Ther 13: 12515-12519, 2020. PMID: 33311990. DOI: 10.2147/OTT.S282933
    OpenUrlCrossRef
    1. Yang Y,
    2. Qin SK,
    3. Zhu J,
    4. Wang R,
    5. Li YM,
    6. Xie ZY and
    7. Wu Q
    : A rare STRN-ALK fusion in lung adenocarcinoma identified using next-generation sequencing-based circulating tumor DNA profiling exhibits excellent response to crizotinib. Mayo Clin Proc Innov Qual Outcomes 1(1): 111-116, 2017. PMID: 30225407. DOI: 10.1016/j.mayocpiqo.2017.04.003
    OpenUrlCrossRef
  71. ↵
    1. Rüschoff JH,
    2. Gradhand E,
    3. Kahraman A,
    4. Rees H,
    5. Ferguson JL,
    6. Curioni-Fontecedro A,
    7. Zoche M,
    8. Moch H and
    9. Vrugt B
    : STRN - ALK rearranged malignant peritoneal mesothelioma with dramatic response following ceritinib treatment. JCO Precis Oncol 3: 2019. PMID: 32914035. DOI: 10.1200/PO.19.00048
    OpenUrlCrossRef
  72. ↵
    1. Pérot G,
    2. Soubeyran I,
    3. Ribeiro A,
    4. Bonhomme B,
    5. Savagner F,
    6. Boutet-Bouzamondo N,
    7. Hostein I,
    8. Bonichon F,
    9. Godbert Y and
    10. Chibon F
    : Identification of a recurrent STRN/ALK fusion in thyroid carcinomas. PLoS One 9(1): e87170, 2014. PMID: 24475247. DOI: 10.1371/journal.pone.0087170
    OpenUrlCrossRefPubMed
  73. ↵
    1. Mano H
    : ALKoma: A cancer subtype with a shared target. Cancer Discov 2(6): 495-502, 2012. PMID: 22614325. DOI: 10.1158/2159-8290.CD-12-0009
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Iragavarapu C,
    2. Mustafa M,
    3. Akinleye A,
    4. Furqan M,
    5. Mittal V,
    6. Cang S and
    7. Liu D
    : Novel ALK inhibitors in clinical use and development. J Hematol Oncol 8: 17, 2015. PMID: 25888090. DOI: 10.1186/s13045-015-0122-8
    OpenUrlCrossRef
    1. Mano H
    : Second-generation ALK inhibitors. Clin Adv Hematol Oncol 13(7): 416-417, 2015. PMID: 26353035.
    OpenUrl
    1. Rolfo C,
    2. Ruiz R,
    3. Giovannetti E,
    4. Gil-Bazo I,
    5. Russo A,
    6. Passiglia F,
    7. Giallombardo M,
    8. Peeters M and
    9. Raez L
    : Entrectinib: A potent new TRK, ROS1, and ALK inhibitor. Expert Opin Investig Drugs 24(11): 1493-1500, 2015. PMID: 26457764. DOI: 10.1517/13543784.2015.1096344
    OpenUrlCrossRefPubMed
    1. Chan EL,
    2. Chin CH and
    3. Lui VW
    : An update of ALK inhibitors in human clinical trials. Future Oncol 12(1): 71-81, 2016. PMID: 26618223. DOI: 10.2217/fon.15.293
    OpenUrlCrossRef
    1. Farina F and
    2. Gambacorti-Passerini C
    : ALK inhibitors for clinical use in cancer therapy. Front Biosci (Elite Ed) 8: 46-60, 2016. PMID: 26709645.
    OpenUrl
  75. ↵
    1. Beardslee T and
    2. Lawson J
    : Alectinib and brigatinib: New second-generation ALK inhibitors for the treatment of non-small cell lung cancer. J Adv Pract Oncol 9(1): 94-101, 2018. PMID: 30564472.
    OpenUrl
  76. ↵
    1. Vendrell JA,
    2. Taviaux S,
    3. Béganton B,
    4. Godreuil S,
    5. Audran P,
    6. Grand D,
    7. Clermont E,
    8. Serre I,
    9. Szablewski V,
    10. Coopman P,
    11. Mazières J,
    12. Costes V,
    13. Pujol JL,
    14. Brousset P,
    15. Rouquette I and
    16. Solassol J
    : Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep 7(1): 12510, 2017. PMID: 28970558. DOI: 10.1038/s41598-017-12679-8
    OpenUrlCrossRefPubMed
  77. ↵
    1. Kaufmann I,
    2. Martin G,
    3. Friedlein A,
    4. Langen H and
    5. Keller W
    : Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 23(3): 616-626, 2004. PMID: 14749727. DOI: 10.1038/sj.emboj.7600070
    OpenUrlAbstract/FREE Full Text
  78. ↵
    1. Claesson-Welsh L,
    2. Eriksson A,
    3. Westermark B and
    4. Heldin CH
    : cDNA cloning and expression of the human A-type platelet-derived growth factor (PDGF) receptor establishes structural similarity to the B-type PDGF receptor. Proc Natl Acad Sci USA 86(13): 4917-4921, 1989. PMID: 2544881. DOI: 10.1073/pnas.86.13.4917
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Matsui T,
    2. Heidaran M,
    3. Miki T,
    4. Popescu N,
    5. La Rochelle W,
    6. Kraus M,
    7. Pierce J and
    8. Aaronson S
    : Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243(4892): 800-804, 1989. PMID: 2536956. DOI: 10.1126/science.2536956
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Chen PH,
    2. Chen X and
    3. He X
    : Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochim Biophys Acta 1834(10): 2176-2186, 2013. PMID: 23137658. DOI: 10.1016/j.bbapap.2012.10.015
    OpenUrlCrossRef
    1. Robinson DR,
    2. Wu YM and
    3. Lin SF
    : The protein tyrosine kinase family of the human genome. Oncogene 19(49): 5548-5557, 2000. PMID: 11114734. DOI: 10.1038/sj.onc.1203957
    OpenUrlCrossRefPubMed
    1. Reilly JT
    : Class III receptor tyrosine kinases: Role in leukaemogenesis. Br J Haematol 116(4): 744-757, 2002. PMID: 11886377. DOI: 10.1046/j.0007-1048.2001.03294.x
    OpenUrlCrossRefPubMed
  81. ↵
    1. Berenstein R
    : Class III receptor tyrosine kinases in acute leukemia - Biological functions and modern laboratory analysis. Biomark Insights 10(Suppl 3): 1-14, 2015. PMID: 26309392. DOI: 10.4137/BMI.S22433
    OpenUrlCrossRefPubMed
  82. ↵
    1. Ségaliny AI,
    2. Tellez-Gabriel M,
    3. Heymann MF and
    4. Heymann D
    : Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 4(1): 1-12, 2015. PMID: 26579483. DOI: 10.1016/j.jbo.2015.01.001
    OpenUrlCrossRefPubMed
  83. ↵
    1. Cools J,
    2. DeAngelo DJ,
    3. Gotlib J,
    4. Stover EH,
    5. Legare RD,
    6. Cortes J,
    7. Kutok J,
    8. Clark J,
    9. Galinsky I,
    10. Griffin JD,
    11. Cross NC,
    12. Tefferi A,
    13. Malone J,
    14. Alam R,
    15. Schrier SL,
    16. Schmid J,
    17. Rose M,
    18. Vandenberghe P,
    19. Verhoef G,
    20. Boogaerts M,
    21. Wlodarska I,
    22. Kantarjian H,
    23. Marynen P,
    24. Coutre SE,
    25. Stone R and
    26. Gilliland DG
    : A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348(13): 1201-1214, 2003. PMID: 12660384. DOI: 10.1056/NEJMoa025217
    OpenUrlCrossRefPubMed
  84. ↵
    1. Swerdlow SH,
    2. Campo E,
    3. Harris NL,
    4. Jaffe ES,
    5. Pileri SA,
    6. Stein H,
    7. Thiele J and
    8. Vardiman JW
    1. Bain BJ,
    2. Gilliland DG,
    3. Horny HP and
    4. Vardiman JW
    : Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. In: WHO classification of tumours of haematopoietic and lLymphoid tissues. 4th ed. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J and Vardiman JW (eds.). International Agency for Research on Cancer (IARC) Lyon, pp. 68-73, 2008.
    1. Arber DA,
    2. Orazi A,
    3. Hasserjian R,
    4. Thiele J,
    5. Borowitz MJ,
    6. Le Beau MM,
    7. Bloomfield CD,
    8. Cazzola M and
    9. Vardiman JW
    : The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20): 2391-2405, 2016. PMID: 27069254. DOI: 10.1182/blood-2016-03-643544
    OpenUrlAbstract/FREE Full Text
  85. ↵
    1. Swerdlow SH,
    2. Campo E,
    3. Harris NL,
    4. Jaffe ES,
    5. Pileri SA,
    6. Stein H,
    7. Thiele J,
    8. Arber DA,
    9. Hasserjian RP,
    10. Le Beau MM,
    11. Orazi A and
    12. Siebert R
    1. Bain BJ,
    2. Horny HP,
    3. Arber DA,
    4. Tefferi A and
    5. Hasserjian RP
    : Myeloid/lymphoid neoplasms with PDGFRA rearrangement. In: WHO classification of tumours of haematopoietic and lymphoid tissues. 5th ed. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A and Siebert R (eds.). International Agency for Research on Cancer (IARC) Lyon, pp. 73-75, 2017.
  86. ↵
    1. Qu SQ,
    2. Qin TJ,
    3. Xu ZF,
    4. Zhang Y,
    5. Ai XF,
    6. Li B,
    7. Zhang HL,
    8. Fang LW,
    9. Pan LJ,
    10. Hu NB and
    11. Xiao ZJ
    : Long-term outcomes of imatinib in patients with FIP1L1/ PDGFRA associated chronic eosinophilic leukemia: Experience of a single center in China. Oncotarget 7(22): 33229-33236, 2016. PMID: 27120808. DOI: 10.18632/oncotarget.8906
    OpenUrlCrossRef
  87. ↵
    1. Metzgeroth G,
    2. Schwaab J,
    3. Naumann N,
    4. Jawhar M,
    5. Haferlach T,
    6. Fabarius A,
    7. Hochhaus A,
    8. Hofmann WK,
    9. Cross NCP and
    10. Reiter A
    : Treatment-free remission in FIP1L1-PDGFRA-positive myeloid/lymphoid neoplasms with eosinophilia after imatinib discontinuation. Blood Adv 4(3): 440-443, 2020. PMID: 31995156. DOI: 10.1182/bloodadvances.2019001111
    OpenUrlCrossRef
  88. ↵
    1. Golub TR,
    2. Barker GF,
    3. Lovett M and
    4. Gilliland DG
    : Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77(2): 307-316, 1994. PMID: 8168137. DOI: 10.1016/0092-8674(94)90322-0
    OpenUrlCrossRefPubMed
  89. ↵
    1. Lengline E,
    2. Beldjord K,
    3. Dombret H,
    4. Soulier J,
    5. Boissel N and
    6. Clappier E
    : Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica 98(11): e146-e148, 2013. PMID: 24186319. DOI: 10.3324/haematol.2013.095372
    OpenUrlFREE Full Text
  90. ↵
    1. Weston BW,
    2. Hayden MA,
    3. Roberts KG,
    4. Bowyer S,
    5. Hsu J,
    6. Fedoriw G,
    7. Rao KW and
    8. Mullighan CG
    : Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol 31(25): e413-e416, 2013. PMID: 23835704. DOI: 10.1200/JCO.2012.47.6770
    OpenUrlFREE Full Text
    1. Gosenca D,
    2. Kellert B,
    3. Metzgeroth G,
    4. Haferlach C,
    5. Fabarius A,
    6. Schwaab J,
    7. Kneba M,
    8. Scheid C,
    9. Töpelt K,
    10. Erben P,
    11. Haferlach T,
    12. Cross NC,
    13. Hofmann WK,
    14. Seifarth W and
    15. Reiter A
    : Identification and functional characterization of imatinib-sensitive DTD1-PDGFRB and CCDC88C-PDGFRB fusion genes in eosinophilia-associated myeloid/lymphoid neoplasms. Genes Chromosomes Cancer 53(5): 411-421, 2014. PMID: 24772479. DOI: 10.1002/gcc.22153
    OpenUrlCrossRefPubMed
    1. Cheah CY,
    2. Burbury K,
    3. Apperley JF,
    4. Huguet F,
    5. Pitini V,
    6. Gardembas M,
    7. Ross DM,
    8. Forrest D,
    9. Genet P,
    10. Rousselot P,
    11. Patton N,
    12. Smith G,
    13. Dunbar CE,
    14. Ito S,
    15. Aguiar RC,
    16. Odenike O,
    17. Gimelfarb A,
    18. Cross NC and
    19. Seymour JF
    : Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood 123(23): 3574-3577, 2014. PMID: 24687085. DOI: 10.1182/blood-2014-02-555607
    OpenUrlAbstract/FREE Full Text
    1. Appiah-Kubi K,
    2. Lan T,
    3. Wang Y,
    4. Qian H,
    5. Wu M,
    6. Yao X,
    7. Wu Y and
    8. Chen Y
    : Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies. Crit Rev Oncol Hematol 109: 20-34, 2017. PMID: 28010895. DOI: 10.1016/j.critrevonc.2016.11.008
    OpenUrlCrossRef
    1. Horiuchi M,
    2. Yoshida M,
    3. Yamasaki K,
    4. Sakagami R,
    5. Aoyama T,
    6. Tatsumi N,
    7. Tsutsumi M,
    8. Nakaya Y,
    9. Fuseya H,
    10. Yoshimura T,
    11. Hayashi Y,
    12. Nakao T and
    13. Yamane T
    : Effective treatment with imatinib for acute B-lymphoblastic leukaemia with EBF1-PDGFRB fusion. Ann Hematol 2020. PMID: 33150465. DOI: 10.1007/s00277-020-04332-8
    OpenUrlCrossRef
    1. Oya S,
    2. Morishige S,
    3. Ozawa H,
    4. Sasaki K,
    5. Semba Y,
    6. Yamasaki Y,
    7. Nakamura T,
    8. Aoyama K,
    9. Seki R,
    10. Mouri F,
    11. Osaki K,
    12. Miyamoto T,
    13. Maeda T and
    14. Nagafuji K
    : Beneficial tyrosine kinase inhibitor therapy in a patient with relapsed BCR-ABL1-like acute lymphoblastic leukemia with CCDC88C-PDGFRB fusion. Int J Hematol 113(2): 285-289, 2021. PMID: 32951102. DOI: 10.1007/s12185-020-03006-5
    OpenUrlCrossRef
    1. Zimmermann N,
    2. Nassiri M,
    3. Zhou J,
    4. Miller AM and
    5. Zhang S
    : Myeloid neoplasm with a novel cryptic PDGFRB rearrangement detected by next-generation sequencing. Cancer Genet 244: 55-59, 2020. PMID: 32442889. DOI: 10.1016/j.cancergen.2020.03.002
    OpenUrlCrossRef
  91. ↵
    1. Sakurai Y,
    2. Sarashina T,
    3. Toriumi N,
    4. Hatakeyama N,
    5. Kanayama T,
    6. Imamura T,
    7. Osumi T,
    8. Ohki K,
    9. Kiyokawa N and
    10. Azuma H
    : B-cell precursor-acute lymphoblastic leukemia with EBF1-PDGFRB fusion treated with hematopoietic stem cell transplantation and imatinib: A case report and literature review. J Pediatr Hematol Oncol 43(1): e105-e108, 2021. PMID: 32068648. DOI: 10.1097/MPH.0000000000001743
    OpenUrlCrossRef
  92. ↵
    1. Roberts KG,
    2. Morin RD,
    3. Zhang J,
    4. Hirst M,
    5. Zhao Y,
    6. Su X,
    7. Chen SC,
    8. Payne-Turner D,
    9. Churchman ML,
    10. Harvey RC,
    11. Chen X,
    12. Kasap C,
    13. Yan C,
    14. Becksfort J,
    15. Finney RP,
    16. Teachey DT,
    17. Maude SL,
    18. Tse K,
    19. Moore R,
    20. Jones S,
    21. Mungall K,
    22. Birol I,
    23. Edmonson MN,
    24. Hu Y,
    25. Buetow KE,
    26. Chen IM,
    27. Carroll WL,
    28. Wei L,
    29. Ma J,
    30. Kleppe M,
    31. Levine RL,
    32. Garcia-Manero G,
    33. Larsen E,
    34. Shah NP,
    35. Devidas M,
    36. Reaman G,
    37. Smith M,
    38. Paugh SW,
    39. Evans WE,
    40. Grupp SA,
    41. Jeha S,
    42. Pui CH,
    43. Gerhard DS,
    44. Downing JR,
    45. Willman CL,
    46. Loh M,
    47. Hunger SP,
    48. Marra MA and
    49. Mullighan CG
    : Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22(2): 153-166, 2012. PMID: 22897847. DOI: 10.1016/j.ccr.2012.06.005
    OpenUrlCrossRefPubMed
  93. ↵
    1. Schwab C,
    2. Ryan SL,
    3. Chilton L,
    4. Elliott A,
    5. Murray J,
    6. Richardson S,
    7. Wragg C,
    8. Moppett J,
    9. Cummins M,
    10. Tunstall O,
    11. Parker CA,
    12. Saha V,
    13. Goulden N,
    14. Vora A,
    15. Moorman AV and
    16. Harrison CJ
    : EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): Genetic profile and clinical implications. Blood 127(18): 2214-2218, 2016. PMID: 26872634. DOI: 10.1182/blood-2015-09-670166
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Fazio F,
    2. Barberi W,
    3. Cazzaniga G,
    4. Fazio G,
    5. Messina M,
    6. Della Starza I,
    7. De Propris MS,
    8. Mancini F,
    9. Mohamed S,
    10. Del Giudice I,
    11. Chiaretti S,
    12. Moleti ML,
    13. Guarini A,
    14. Foà R and
    15. Testi AM
    : Efficacy of imatinib and chemotherapy in a pediatric patient with Philadelphia-like acute lymphoblastic leukemia with Ebf1-Pdgfrb fusion transcript. Leuk Lymphoma 61(2): 469-472, 2020. PMID: 31558067. DOI: 10.1080/10428194.2019.1668938
    OpenUrlCrossRef
  95. ↵
    1. Roberts KG,
    2. Li Y,
    3. Payne-Turner D,
    4. Harvey RC,
    5. Yang YL,
    6. Pei D,
    7. McCastlain K,
    8. Ding L,
    9. Lu C,
    10. Song G,
    11. Ma J,
    12. Becksfort J,
    13. Rusch M,
    14. Chen SC,
    15. Easton J,
    16. Cheng J,
    17. Boggs K,
    18. Santiago-Morales N,
    19. Iacobucci I,
    20. Fulton RS,
    21. Wen J,
    22. Valentine M,
    23. Cheng C,
    24. Paugh SW,
    25. Devidas M,
    26. Chen IM,
    27. Reshmi S,
    28. Smith A,
    29. Hedlund E,
    30. Gupta P,
    31. Nagahawatte P,
    32. Wu G,
    33. Chen X,
    34. Yergeau D,
    35. Vadodaria B,
    36. Mulder H,
    37. Winick NJ,
    38. Larsen EC,
    39. Carroll WL,
    40. Heerema NA,
    41. Carroll AJ,
    42. Grayson G,
    43. Tasian SK,
    44. Moore AS,
    45. Keller F,
    46. Frei-Jones M,
    47. Whitlock JA,
    48. Raetz EA,
    49. White DL,
    50. Hughes TP,
    51. Guidry Auvil JM,
    52. Smith MA,
    53. Marcucci G,
    54. Bloomfield CD,
    55. Mrózek K,
    56. Kohlschmidt J,
    57. Stock W,
    58. Kornblau SM,
    59. Konopleva M,
    60. Paietta E,
    61. Pui CH,
    62. Jeha S,
    63. Relling MV,
    64. Evans WE,
    65. Gerhard DS,
    66. Gastier-Foster JM,
    67. Mardis E,
    68. Wilson RK,
    69. Loh ML,
    70. Downing JR,
    71. Hunger SP,
    72. Willman CL,
    73. Zhang J and
    74. Mullighan CG
    : Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371(11): 1005-1015, 2014. PMID: 25207766. DOI: 10.1056/NEJMoa1403088
    OpenUrlCrossRefPubMed
    1. Ross DM,
    2. Altamura HK,
    3. Hahn CN,
    4. Nicola M,
    5. Yeoman AL,
    6. Holloway MR,
    7. Geoghegan J,
    8. Feng J,
    9. Schreiber AW,
    10. Branford S,
    11. Moore S and
    12. Scott HS
    : Delayed diagnosis leading to accelerated-phase chronic eosinophilic leukemia due to a cytogenetically cryptic, imatinib-responsive TNIP1-PDFGRB fusion gene. Leukemia 30(6): 1402-1405, 2016. PMID: 26503642. DOI: 10.1038/leu.2015.301
    OpenUrlCrossRef
  96. ↵
    1. Maccaferri M,
    2. Pierini V,
    3. Di Giacomo D,
    4. Zucchini P,
    5. Forghieri F,
    6. Bonacorsi G,
    7. Paolini A,
    8. Quadrelli C,
    9. Giacobbi F,
    10. Fontana F,
    11. Cappelli G,
    12. Potenza L,
    13. Marasca R,
    14. Luppi M and
    15. Mecucci C
    : The importance of cytogenetic and molecular analyses in eosinophilia-associated myeloproliferative neoplasms: An unusual case with normal karyotype and TNIP1-PDGFRB rearrangement and overview of PDGFRB partner genes. Leuk Lymphoma 58(2): 489-493, 2017. PMID: 27337990. DOI: 10.1080/10428194.2016.1197396
    OpenUrlCrossRef
  97. ↵
    1. Liu YF,
    2. Wang BY,
    3. Zhang WN,
    4. Huang JY,
    5. Li BS,
    6. Zhang M,
    7. Jiang L,
    8. Li JF,
    9. Wang MJ,
    10. Dai YJ,
    11. Zhang ZG,
    12. Wang Q,
    13. Kong J,
    14. Chen B,
    15. Zhu YM,
    16. Weng XQ,
    17. Shen ZX,
    18. Li JM,
    19. Wang J,
    20. Yan XJ,
    21. Li Y,
    22. Liang YM,
    23. Liu L,
    24. Chen XQ,
    25. Zhang WG,
    26. Yan JS,
    27. Hu JD,
    28. Shen SH,
    29. Chen J,
    30. Gu LJ,
    31. Pei D,
    32. Li Y,
    33. Wu G,
    34. Zhou X,
    35. Ren RB,
    36. Cheng C,
    37. Yang JJ,
    38. Wang KK,
    39. Wang SY,
    40. Zhang J,
    41. Mi JQ,
    42. Pui CH,
    43. Tang JY,
    44. Chen Z and
    45. Chen SJ
    : Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine 8: 173-183, 2016. PMID: 27428428. DOI: 10.1016/j.ebiom.2016.04.038
    OpenUrlCrossRefPubMed
  98. ↵
    1. Al-Ibraheemi A,
    2. Folpe AL,
    3. Perez-Atayde AR,
    4. Perry K,
    5. Hofvander J,
    6. Arbajian E,
    7. Magnusson L,
    8. Nilsson J and
    9. Mertens F
    : Aberrant receptor tyrosine kinase signaling in lipofibromatosis: A clinicopathological and molecular genetic study of 20 cases. Mod Pathol 32(3): 423-434, 2019. PMID: 30310176. DOI: 10.1038/s41379-018-0150-3
    OpenUrlCrossRefPubMed
  99. ↵
    1. Birchmeier C,
    2. Birnbaum D,
    3. Waitches G,
    4. Fasano O and
    5. Wigler M
    : Characterization of an activated human ros gene. Mol Cell Biol 6(9): 3109-3116, 1986. PMID: 3785223. DOI: 10.1128/mcb.6.9.3109
    OpenUrlAbstract/FREE Full Text
    1. Matsushime H,
    2. Wang LH and
    3. Shibuya M
    : Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol Cell Biol 6(8): 3000-3004, 1986. PMID: 3023956. DOI: 10.1128/mcb.6.8.3000
    OpenUrlAbstract/FREE Full Text
    1. Nagarajan L,
    2. Louie E,
    3. Tsujimoto Y,
    4. Balduzzi PC,
    5. Huebner K and
    6. Croce CM
    : The human c-ros gene (ROS) is located at chromosome region 6q16——6q22. Proc Natl Acad Sci USA 83(17): 6568-6572, 1986. PMID: 3529088. DOI: 10.1073/pnas.83.17.6568
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Birchmeier C,
    2. Sharma S and
    3. Wigler M
    : Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci USA 84(24): 9270-9274, 1987. PMID: 2827175. DOI: 10.1073/pnas.84.24.9270
    OpenUrlAbstract/FREE Full Text
    1. Rabin M,
    2. Birnbaum D,
    3. Young D,
    4. Birchmeier C,
    5. Wigler M and
    6. Ruddle FH
    : Human ros1 and mas1 oncogenes located in regions of chromosome 6 associated with tumor-specific rearrangements. Oncogene Res 1(2): 169-178, 1987. PMID: 3329713.
    OpenUrlPubMed
    1. Satoh H,
    2. Yoshida MC,
    3. Matsushime H,
    4. Shibuya M and
    5. Sasaki M
    : Regional localization of the human c-ros-1 on 6q22 and flt on 13q12. Jpn J Cancer Res 78(8): 772-775, 1987. PMID: 3115921.
    OpenUrl
  101. ↵
    1. Birchmeier C,
    2. O’Neill K,
    3. Riggs M and
    4. Wigler M
    : Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc Natl Acad Sci USA 87(12): 4799-4803, 1990. PMID: 2352949. DOI: 10.1073/pnas.87.12.4799
    OpenUrlAbstract/FREE Full Text
    1. Sharma S,
    2. Birchmeier C,
    3. Nikawa J,
    4. O’Neill K,
    5. Rodgers L and
    6. Wigler M
    : Characterization of the ros1-gene products expressed in human glioblastoma cell lines. Oncogene Res 5(2): 91-100, 1989. PMID: 2691958.
    OpenUrlPubMed
    1. Zhao JF and
    2. Sharma S
    : Expression of the ROS1 oncogene for tyrosine receptor kinase in adult human meningiomas. Cancer Genet Cytogenet 83(2): 148-154, 1995. PMID: 7553586. DOI: 10.1016/0165-4608(95)00043-o
    OpenUrlCrossRefPubMed
  102. ↵
    1. Maxwell M,
    2. Galanopoulos T,
    3. Nevillegolden J and
    4. Antoniades H
    : Overexpression of the ros1 gene in primary human gliomas may contribute to malignant progression. Int J Oncol 8(4): 713-718, 1996. PMID: 21544418. DOI: 10.3892/ijo.8.4.713
    OpenUrlCrossRefPubMed
  103. ↵
    1. Uguen A and
    2. De Braekeleer M
    : ROS1 fusions in cancer: A review. Future Oncol 12(16): 1911-1928, 2016. PMID: 27256160. DOI: 10.2217/fon-2016-0050
    OpenUrlCrossRefPubMed
  104. ↵
    1. Drilon A,
    2. Jenkins C,
    3. Iyer S,
    4. Schoenfeld A,
    5. Keddy C and
    6. Davare MA
    : ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 18(1): 35-55, 2021. PMID: 32760015. DOI: 10.1038/s41571-020-0408-9
    OpenUrlCrossRefPubMed
  105. ↵
    1. Huang RSP,
    2. Haberberger J,
    3. Sokol E,
    4. Schrock AB,
    5. Danziger N,
    6. Madison R,
    7. Trabucco S,
    8. Jin D,
    9. Pavlick D,
    10. Ramanan V,
    11. Hole K,
    12. McGregor K,
    13. Venstrom J and
    14. Ross JS
    : Clinicopathologic, genomic and protein expression characterization of 356 ROS1 fusion driven solid tumors cases. Int J Cancer 148(7): 1778-1788, 2021. PMID: 33336398. DOI: 10.1002/ijc.33447
    OpenUrlCrossRefPubMed
    1. Lan S,
    2. Li H,
    3. Liu Y,
    4. Xu J,
    5. Huang Z,
    6. Yan S,
    7. Zhang Q and
    8. Cheng Y
    : A novel ROS1-FBXL17 fusion co-existing with CD74-ROS1 fusion may improve sensitivity to crizotinib and prolong progression-free survival of patients with lung adenocarcinoma. Onco Targets Ther 13: 11499-11504, 2020. PMID: 33204104. DOI: 10.2147/OTT.S278907
    OpenUrlCrossRef
    1. Li J,
    2. Liu L,
    3. Zhang Q,
    4. Huang Y,
    5. Zhang Y,
    6. Gan X,
    7. Liu S,
    8. Yue Z and
    9. Wei Y
    : A novel TJP1-ROS1 fusion in malignant peripheral nerve sheath tumor responding to crizotinib: A case report. Medicine (Baltimore) 99(26): e20725, 2020. PMID: 32590748. DOI: 10.1097/MD.0000000000020725
    OpenUrlCrossRef
  106. ↵
    1. Suehara Y,
    2. Kohsaka S,
    3. Hayashi T,
    4. Akaike K,
    5. Kurisaki-Arakawa A,
    6. Sato S,
    7. Kobayashi E,
    8. Mizuno S,
    9. Ueno T,
    10. Morii T,
    11. Okuma T,
    12. Kurihara T,
    13. Hasegawa N,
    14. Sano K,
    15. Sasa K,
    16. Okubo T,
    17. Kim Y,
    18. Mano H and
    19. Saito T
    : Identification of a novel MAN1A1-ROS1 fusion gene through mRNA-based Screening for tyrosine kinase gene aberrations in a patient with leiomyosarcoma. Clin Orthop Relat Res 2020. PMID: 33196586. DOI: 10.1097/CORR.0000000000001548
    OpenUrlCrossRef
  107. ↵
    1. Zhang Y,
    2. Yu M,
    3. Yuan M,
    4. Chen R and
    5. Huang MJ
    : Identification of a novel RBPMS-ROS1 fusion in an adolescent patient with microsatellite-instable advanced lung adenocarcinoma sensitive to crizotinib: A case report. Clin Lung Cancer 21(2): e78-e83, 2020. PMID: 31722815. DOI: 10.1016/j.cllc.2019.09.003
    OpenUrlCrossRef
  108. ↵
    1. Davare MA,
    2. Henderson JJ,
    3. Agarwal A,
    4. Wagner JP,
    5. Iyer SR,
    6. Shah N,
    7. Woltjer R,
    8. Somwar R,
    9. Gilheeney SW,
    10. DeCarvalo A,
    11. Mikkelson T,
    12. Van Meir EG,
    13. Ladanyi M and
    14. Druker BJ
    : Rare but recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin Cancer Res 24(24): 6471-6482, 2018. PMID: 30171048. DOI: 10.1158/1078-0432.CCR-18-1052
    OpenUrlAbstract/FREE Full Text
  109. ↵
    1. Morris TA,
    2. Khoo C and
    3. Solomon BJ
    : Targeting ROS1 rearrangements in non-small cell lung cancer: Crizotinib and newer generation tyrosine kinase inhibitors. Drugs 79(12): 1277-1286, 2019. PMID: 31313100. DOI: 10.1007/s40265-019-01164-3
    OpenUrlCrossRef
  110. ↵
    1. Richardson TE,
    2. Tang K,
    3. Vasudevaraja V,
    4. Serrano J,
    5. William CM,
    6. Mirchia K,
    7. Pierson CR,
    8. Leonard JR,
    9. AbdelBaki MS,
    10. Schieffer KM,
    11. Cottrell CE,
    12. Tovar-Spinoza Z,
    13. Comito MA,
    14. Boué DR,
    15. Jour G and
    16. Snuderl M
    : GOPC-ROS1 fusion due to microdeletion at 6q22 is an oncogenic driver in a subset of pediatric gliomas and glioneuronal tumors. J Neuropathol Exp Neurol 78(12): 1089-1099, 2019. PMID: 31626289. DOI: 10.1093/jnen/nlz093
    OpenUrlCrossRef
  111. ↵
    1. Araujo JM,
    2. Gomez AC,
    3. Pinto JA,
    4. Rolfo C and
    5. Raez LE
    : Profile of entrectinib in the treatment of ROS1-positive non-small cell lung cancer: Evidence to date. Hematol Oncol Stem Cell Ther:, 2020. PMID: 33290717. DOI: 10.1016/j.hemonc.2020.11.005
    OpenUrlCrossRef
    1. Fischer H,
    2. Ullah M,
    3. de la Cruz CC,
    4. Hunsaker T,
    5. Senn C,
    6. Wirz T,
    7. Wagner B,
    8. Draganov D,
    9. Vazvaei F,
    10. Donzelli M,
    11. Paehler A,
    12. Merchant M and
    13. Yu L
    : Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: Differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein. Neuro Oncol 22(6): 819-829, 2020. PMID: 32383735. DOI: 10.1093/neuonc/noaa052
    OpenUrlCrossRef
  112. ↵
    1. Sehgal K,
    2. Piper-Vallillo AJ,
    3. Viray H,
    4. Khan AM,
    5. Rangachari D and
    6. Costa DB
    : Cases of ROS1-rearranged lung cancer: When to use crizotinib, entrectinib, lorlatinib, and beyond? Precis Cancer Med 3: 2020. PMID: 32776005. DOI: 10.21037/pcm-2020-potb-02
    OpenUrlCrossRef
  113. ↵
    1. Charest A,
    2. Lane K,
    3. McMahon K,
    4. Park J,
    5. Preisinger E,
    6. Conroy H and
    7. Housman D
    : Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 37(1): 58-71, 2003. PMID: 12661006. DOI: 10.1002/gcc.10207
    OpenUrlCrossRefPubMed
  114. ↵
    1. Charest A,
    2. Kheifets V,
    3. Park J,
    4. Lane K,
    5. McMahon K,
    6. Nutt CL and
    7. Housman D
    : Oncogenic targeting of an activated tyrosine kinase to the golgi apparatus in a glioblastoma. Proc Natl Acad Sci USA 100(3): 916-921, 2003. PMID: 12538861. DOI: 10.1073/pnas.242741799
    OpenUrlAbstract/FREE Full Text
  115. ↵
    1. Gu TL,
    2. Deng X,
    3. Huang F,
    4. Tucker M,
    5. Crosby K,
    6. Rimkunas V,
    7. Wang Y,
    8. Deng G,
    9. Zhu L,
    10. Tan Z,
    11. Hu Y,
    12. Wu C,
    13. Nardone J,
    14. MacNeill J,
    15. Ren J,
    16. Reeves C,
    17. Innocenti G,
    18. Norris B,
    19. Yuan J,
    20. Yu J,
    21. Haack H,
    22. Shen B,
    23. Peng C,
    24. Li H,
    25. Zhou X,
    26. Liu X,
    27. Rush J and
    28. Comb MJ
    : Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One 6(1): e15640, 2011. PMID: 21253578. DOI: 10.1371/journal.pone.0015640
    OpenUrlCrossRefPubMed
    1. Suehara Y,
    2. Arcila M,
    3. Wang L,
    4. Hasanovic A,
    5. Ang D,
    6. Ito T,
    7. Kimura Y,
    8. Drilon A,
    9. Guha U,
    10. Rusch V,
    11. Kris MG,
    12. Zakowski MF,
    13. Rizvi N,
    14. Khanin R and
    15. Ladanyi M
    : Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res 18(24): 6599-6608, 2012. PMID: 23052255. DOI: 10.1158/1078-0432.CCR-12-0838
    OpenUrlAbstract/FREE Full Text
    1. Guerreiro Stucklin AS,
    2. Ryall S,
    3. Fukuoka K,
    4. Zapotocky M,
    5. Lassaletta A,
    6. Li C,
    7. Bridge T,
    8. Kim B,
    9. Arnoldo A,
    10. Kowalski PE,
    11. Zhong Y,
    12. Johnson M,
    13. Li C,
    14. Ramani AK,
    15. Siddaway R,
    16. Nobre LF,
    17. de Antonellis P,
    18. Dunham C,
    19. Cheng S,
    20. Boué DR,
    21. Finlay JL,
    22. Coven SL,
    23. de Prada I,
    24. Perez-Somarriba M,
    25. Faria CC,
    26. Grotzer MA,
    27. Rushing E,
    28. Sumerauer D,
    29. Zamecnik J,
    30. Krskova L,
    31. Garcia Ariza M,
    32. Cruz O,
    33. Morales La Madrid A,
    34. Solano P,
    35. Terashima K,
    36. Nakano Y,
    37. Ichimura K,
    38. Nagane M,
    39. Sakamoto H,
    40. Gil-da-Costa MJ,
    41. Silva R,
    42. Johnston DL,
    43. Michaud J,
    44. Wilson B,
    45. van Landeghem FKH,
    46. Oviedo A,
    47. McNeely PD,
    48. Crooks B,
    49. Fried I,
    50. Zhukova N,
    51. Hansford JR,
    52. Nageswararao A,
    53. Garzia L,
    54. Shago M,
    55. Brudno M,
    56. Irwin MS,
    57. Bartels U,
    58. Ramaswamy V,
    59. Bouffet E,
    60. Taylor MD,
    61. Tabori U and
    62. Hawkins C
    : Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10(1): 4343, 2019. PMID: 31554817. DOI: 10.1038/s41467-019-12187-5
    OpenUrlCrossRefPubMed
  116. ↵
    1. Dong D,
    2. Shen G,
    3. Da Y,
    4. Zhou M,
    5. Yang G,
    6. Yuan M and
    7. Chen R
    : Successful treatment of patients with refractory high-grade serous ovarian cancer with GOPC-ROS1 fusion using crizotinib: A case report. Oncologist 25(11): e1720-e1724, 2020. PMID: 32652753. DOI: 10.1634/theoncologist.2019-0609
    OpenUrlCrossRef
  117. ↵
    1. Arai Y,
    2. Totoki Y,
    3. Takahashi H,
    4. Nakamura H,
    5. Hama N,
    6. Kohno T,
    7. Tsuta K,
    8. Yoshida A,
    9. Asamura H,
    10. Mutoh M,
    11. Hosoda F,
    12. Tsuda H and
    13. Shibata T
    : Mouse model for ROS1-rearranged lung cancer. PLoS One 8(2): e56010, 2013. PMID: 23418494. DOI: 10.1371/journal.pone.0056010
    OpenUrlCrossRefPubMed
  118. ↵
    1. Yoshida A,
    2. Kohno T,
    3. Tsuta K,
    4. Wakai S,
    5. Arai Y,
    6. Shimada Y,
    7. Asamura H,
    8. Furuta K,
    9. Shibata T and
    10. Tsuda H
    : ROS1-rearranged lung cancer: A clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol 37(4): 554-562, 2013. PMID: 23426121. DOI: 10.1097/PAS.0b013e3182758fe6
    OpenUrlCrossRefPubMed
    1. Li H,
    2. Pan Y,
    3. Wang R,
    4. Li Y,
    5. Sun Y and
    6. Chen H
    : Response to crizotinib observed in metastatic mediastinum lymph node from a non-small cell lung cancer patient harboring EZR-ROS1 fusion. J Cancer Res Clin Oncol 141(1): 185-187, 2015. PMID: 25230898. DOI: 10.1007/s00432-014-1821-1
    OpenUrlCrossRefPubMed
    1. Lin JJ and
    2. Shaw AT
    : Recent advances in targeting ROS1 in lung cancer. J Thorac Oncol 12(11): 1611-1625, 2017. PMID: 28818606. DOI: 10.1016/j.jtho.2017.08.002
    OpenUrlCrossRef
    1. Dong L,
    2. Xia J,
    3. Zhang J,
    4. Zhang Y,
    5. Zhu N,
    6. Zhang P,
    7. Zhang Y,
    8. Zhang X and
    9. Li S
    : Long-term progression-free survival in an advanced lung adenocarcinoma patient harboring EZR-ROS1 rearrangement: A case report. BMC Pulm Med 18(1): 13, 2018. PMID: 29361925. DOI: 10.1186/s12890-018-0585-9
    OpenUrlCrossRef
    1. Capizzi E,
    2. Dall’Olio FG,
    3. Gruppioni E,
    4. Sperandi F,
    5. Altimari A,
    6. Giunchi F,
    7. Fiorentino M and
    8. Ardizzoni A
    : Clinical significance of ROS1 5’ deletions in non-small cell lung cancer. Lung Cancer 135: 88-91, 2019. PMID: 31447007. DOI: 10.1016/j.lungcan.2019.07.017
    OpenUrlCrossRefPubMed
  119. ↵
    1. He Y,
    2. Sheng W,
    3. Hu W,
    4. Lin J,
    5. Liu J,
    6. Yu B,
    7. Mao X,
    8. Zhang L,
    9. Huang J and
    10. Wang G
    : Different types of ROS1 fusion partners yield comparable efficacy to crizotinib. Oncol Res 27(8): 901-910, 2019. PMID: 30940295. DOI: 10.3727/096504019X15509372008132
    OpenUrlCrossRefPubMed
  120. ↵
    1. Giacomini CP,
    2. Sun S,
    3. Varma S,
    4. Shain AH,
    5. Giacomini MM,
    6. Balagtas J,
    7. Sweeney RT,
    8. Lai E,
    9. Del Vecchio CA,
    10. Forster AD,
    11. Clarke N,
    12. Montgomery KD,
    13. Zhu S,
    14. Wong AJ,
    15. van de Rijn M,
    16. West RB and
    17. Pollack JR
    : Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS Genet 9(4): e1003464, 2013. PMID: 23637631. DOI: 10.1371/journal.pgen.1003464
    OpenUrlCrossRefPubMed
    1. Stransky N,
    2. Cerami E,
    3. Schalm S,
    4. Kim JL and
    5. Lengauer C
    : The landscape of kinase fusions in cancer. Nat Commun 5: 4846, 2014. PMID: 25204415. DOI: 10.1038/ncomms5846
    OpenUrlCrossRefPubMed
    1. Yang L,
    2. Lee MS,
    3. Lu H,
    4. Oh DY,
    5. Kim YJ,
    6. Park D,
    7. Park G,
    8. Ren X,
    9. Bristow CA,
    10. Haseley PS,
    11. Lee S,
    12. Pantazi A,
    13. Kucherlapati R,
    14. Park WY,
    15. Scott KL,
    16. Choi YL and
    17. Park PJ
    : Analyzing somatic genome rearrangements in human cancers by using whole-exome sequencing. Am J Hum Genet 98(5): 843-856, 2016. PMID: 27153396. DOI: 10.1016/j.ajhg.2016.03.017
    OpenUrlCrossRef
  121. ↵
    1. Johnson A,
    2. Severson E,
    3. Gay L,
    4. Vergilio JA,
    5. Elvin J,
    6. Suh J,
    7. Daniel S,
    8. Covert M,
    9. Frampton GM,
    10. Hsu S,
    11. Lesser GJ,
    12. Stogner-Underwood K,
    13. Mott RT,
    14. Rush SZ,
    15. Stanke JJ,
    16. Dahiya S,
    17. Sun J,
    18. Reddy P,
    19. Chalmers ZR,
    20. Erlich R,
    21. Chudnovsky Y,
    22. Fabrizio D,
    23. Schrock AB,
    24. Ali S,
    25. Miller V,
    26. Stephens PJ,
    27. Ross J,
    28. Crawford JR and
    29. Ramkissoon SH
    : Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 22(12): 1478-1490, 2017. PMID: 28912153. DOI: 10.1634/theoncologist.2017-0242
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Wang X,
    2. Angelis N and
    3. Thein SL
    : MYB - A regulatory factor in hematopoiesis. Gene 665: 6-17, 2018. PMID: 29704633. DOI: 10.1016/j.gene.2018.04.065
    OpenUrlCrossRefPubMed
  123. ↵
    1. Fry EA and
    2. Inoue K
    : c-MYB and DMTF1 in cancer. Cancer Invest 37(1): 46-65, 2019. PMID: 30599775. DOI: 10.1080/07357907.2018.1550090
    OpenUrlCrossRef
  124. ↵
    1. Ness SA
    : Myb binding proteins: Regulators and cohorts in transformation. Oncogene 18(19): 3039-3046, 1999. PMID: 10378699. DOI: 10.1038/sj.onc.1202726
    OpenUrlCrossRefPubMed
    1. Oh IH and
    2. Reddy EP
    : The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18(19): 3017-3033, 1999. PMID: 10378697. DOI: 10.1038/sj.onc.1202839
    OpenUrlCrossRefPubMed
  125. ↵
    1. Ramsay RG and
    2. Gonda TJ
    : MYB function in normal and cancer cells. Nat Rev Cancer 8(7): 523-534, 2008. PMID: 18574464. DOI: 10.1038/nrc2439
    OpenUrlCrossRefPubMed
    1. Kastan MB,
    2. Slamon DJ and
    3. Civin CI
    : Expression of protooncogene c-myb in normal human hematopoietic cells. Blood 73(6): 1444-1451, 1989. PMID: 2469491.
    OpenUrlAbstract/FREE Full Text
    1. Zorbas M,
    2. Sicurella C,
    3. Bertoncello I,
    4. Venter D,
    5. Ellis S,
    6. Mucenski ML and
    7. Ramsay RG
    : c-Myb is critical for murine colon development. Oncogene 18(42): 5821-5830, 1999. PMID: 10523863. DOI: 10.1038/sj.onc.1202971
    OpenUrlCrossRefPubMed
  126. ↵
    1. Malaterre J,
    2. Mantamadiotis T,
    3. Dworkin S,
    4. Lightowler S,
    5. Yang Q,
    6. Ransome MI,
    7. Turnley AM,
    8. Nichols NR,
    9. Emambokus NR,
    10. Frampton J and
    11. Ramsay RG
    : c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem Cells 26(1): 173-181, 2008. PMID: 17901403. DOI: 10.1634/stemcells.2007-0293
    OpenUrlCrossRefPubMed
  127. ↵
    1. Uttarkar S,
    2. Frampton J and
    3. Klempnauer KH
    : Targeting the transcription factor Myb by small-molecule inhibitors. Exp Hematol 47: 31-35, 2017. PMID: 28017646. DOI: 10.1016/j.exphem.2016.12.003
    OpenUrlCrossRef
  128. ↵
    1. Liu X,
    2. Xu Y,
    3. Han L and
    4. Yi Y
    : Reassessing the potential of Myb-targeted anti-cancer therapy. J Cancer 9(7): 1259-1266, 2018. PMID: 29675107. DOI: 10.7150/jca.23992
    OpenUrlCrossRef
  129. ↵
    1. Li ZZ,
    2. Kondo T,
    3. Murata T,
    4. Ebersole TA,
    5. Nishi T,
    6. Tada K,
    7. Ushio Y,
    8. Yamamura K and
    9. Abe K
    : Expression of Hqk encoding a KH RNA binding protein is altered in human glioma. Jpn J Cancer Res 93(2): 167-177, 2002. PMID: 11856480. DOI: 10.1111/j.1349-7006.2002.tb01255.x
    OpenUrlCrossRefPubMed
    1. Backx L,
    2. Fryns JP,
    3. Marcelis C,
    4. Devriendt K,
    5. Vermeesch J and
    6. Van Esch H
    : Haploinsufficiency of the gene Quaking (QKI) is associated with the 6q terminal deletion syndrome. Am J Med Genet A 152A(2): 319-326, 2010. PMID: 20082458. DOI: 10.1002/ajmg.a.33202
    OpenUrlCrossRef
  130. ↵
    1. Caines R,
    2. Cochrane A,
    3. Kelaini S,
    4. Vila-Gonzalez M,
    5. Yang C,
    6. Eleftheriadou M,
    7. Moez A,
    8. Stitt AW,
    9. Zeng L,
    10. Grieve DJ and
    11. Margariti A
    : The RNA-binding protein QKI controls alternative splicing in vascular cells, producing an effective model for therapy. J Cell Sci 132(16): 2019. PMID: 31331967. DOI: 10.1242/jcs.230276
    OpenUrlAbstract/FREE Full Text
  131. ↵
    1. Roth JJ,
    2. Santi M,
    3. Rorke-Adams LB,
    4. Harding BN,
    5. Busse TM,
    6. Tooke LS and
    7. Biegel JA
    : Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors. Cancer Genet 207(4): 111-123, 2014. PMID: 24767714. DOI: 10.1016/j.cancergen.2014.03.002
    OpenUrlCrossRefPubMed
  132. ↵
    1. Zhang J,
    2. Wu G,
    3. Miller CP,
    4. Tatevossian RG,
    5. Dalton JD,
    6. Tang B,
    7. Orisme W,
    8. Punchihewa C,
    9. Parker M,
    10. Qaddoumi I,
    11. Boop FA,
    12. Lu C,
    13. Kandoth C,
    14. Ding L,
    15. Lee R,
    16. Huether R,
    17. Chen X,
    18. Hedlund E,
    19. Nagahawatte P,
    20. Rusch M,
    21. Boggs K,
    22. Cheng J,
    23. Becksfort J,
    24. Ma J,
    25. Song G,
    26. Li Y,
    27. Wei L,
    28. Wang J,
    29. Shurtleff S,
    30. Easton J,
    31. Zhao D,
    32. Fulton RS,
    33. Fulton LL,
    34. Dooling DJ,
    35. Vadodaria B,
    36. Mulder HL,
    37. Tang C,
    38. Ochoa K,
    39. Mullighan CG,
    40. Gajjar A,
    41. Kriwacki R,
    42. Sheer D,
    43. Gilbertson RJ,
    44. Mardis ER,
    45. Wilson RK,
    46. Downing JR,
    47. Baker SJ,
    48. Ellison DW and St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project
    : Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45(6): 602-612, 2013. PMID: 23583981. DOI: 10.1038/ng.2611
    OpenUrlCrossRefPubMed
  133. ↵
    1. Bandopadhayay P,
    2. Ramkissoon LA,
    3. Jain P,
    4. Bergthold G,
    5. Wala J,
    6. Zeid R,
    7. Schumacher SE,
    8. Urbanski L,
    9. O’Rourke R,
    10. Gibson WJ,
    11. Pelton K,
    12. Ramkissoon SH,
    13. Han HJ,
    14. Zhu Y,
    15. Choudhari N,
    16. Silva A,
    17. Boucher K,
    18. Henn RE,
    19. Kang YJ,
    20. Knoff D,
    21. Paolella BR,
    22. Gladden-Young A,
    23. Varlet P,
    24. Pages M,
    25. Horowitz PM,
    26. Federation A,
    27. Malkin H,
    28. Tracy AA,
    29. Seepo S,
    30. Ducar M,
    31. Van Hummelen P,
    32. Santi M,
    33. Buccoliero AM,
    34. Scagnet M,
    35. Bowers DC,
    36. Giannini C,
    37. Puget S,
    38. Hawkins C,
    39. Tabori U,
    40. Klekner A,
    41. Bognar L,
    42. Burger PC,
    43. Eberhart C,
    44. Rodriguez FJ,
    45. Hill DA,
    46. Mueller S,
    47. Haas-Kogan DA,
    48. Phillips JJ,
    49. Santagata S,
    50. Stiles CD,
    51. Bradner JE,
    52. Jabado N,
    53. Goren A,
    54. Grill J,
    55. Ligon AH,
    56. Goumnerova L,
    57. Waanders AJ,
    58. Storm PB,
    59. Kieran MW,
    60. Ligon KL,
    61. Beroukhim R and
    62. Resnick AC
    : MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism. Nat Genet 48(3): 273-282, 2016. PMID: 26829751. DOI: 10.1038/ng.3500
    OpenUrlCrossRefPubMed
    1. D’Aronco L,
    2. Rouleau C,
    3. Gayden T,
    4. Crevier L,
    5. Décarie JC,
    6. Perreault S,
    7. Jabado N,
    8. Bandopadhayay P,
    9. Ligon KL and
    10. Ellezam B
    : Brainstem angiocentric gliomas with MYB-QKI rearrangements. Acta Neuropathol 134(4): 667-669, 2017. PMID: 28803398. DOI: 10.1007/s00401-017-1763-1
    OpenUrlCrossRef
  134. ↵
    1. Lake JA,
    2. Donson AM,
    3. Prince E,
    4. Davies KD,
    5. Nellan A,
    6. Green AL,
    7. Mulcahy Levy J,
    8. Dorris K,
    9. Vibhakar R,
    10. Hankinson TC,
    11. Foreman NK,
    12. Ewalt MD,
    13. Kleinschmidt-DeMasters BK,
    14. Hoffman LM and
    15. Gilani A
    : Targeted fusion analysis can aid in the classification and treatment of pediatric glioma, ependymoma, and glioneuronal tumors. Pediatr Blood Cancer 67(1): e28028, 2020. PMID: 31595628. DOI: 10.1002/pbc.28028
    OpenUrlCrossRef
  135. ↵
    1. Lian F,
    2. Wang LM,
    3. Qi XL,
    4. Liu LN,
    5. Wang XF,
    6. Fu J,
    7. Xiong J,
    8. Lu DH an