Skip to main content

Main menu

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Genomics & Proteomics
  • Other Publications
    • Cancer Genomics & Proteomics
    • Anticancer Research
    • In Vivo
  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Cancer Genomics & Proteomics

Advanced Search

  • Home
  • Current Issue
  • Archive
  • Info for
    • Authors
    • Subscribers
    • Advertisers
    • Editorial Board
  • Other Publications
    • Anticancer Research
    • In Vivo
    • Cancer Diagnosis & Prognosis
  • More
    • IIAR
    • Conferences
  • About Us
    • General Policy
    • Contact
  • Visit iiar on Facebook
  • Follow us on Linkedin
Review ArticleArticles

Combination Methionine-methylation-axis Blockade: A Novel Approach to Target the Methionine Addiction of Cancer

TAKASHI HIGUCHI, QINGHONG HAN, NORIHIKO SUGISAWA, JUN YAMAMOTO, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, MICHAEL BOUVET, SHREE RAM SINGH, HIROYUKI TSUCHIYA and ROBERT M. HOFFMAN
Cancer Genomics & Proteomics March 2021, 18 (2) 113-120; DOI: https://doi.org/10.21873/cgp.20246
TAKASHI HIGUCHI
1AntiCancer, Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
QINGHONG HAN
1AntiCancer, Inc., San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NORIHIKO SUGISAWA
1AntiCancer, Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JUN YAMAMOTO
1AntiCancer, Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
NORIO YAMAMOTO
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KATSUHIRO HAYASHI
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HIROAKI KIMURA
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SHINJI MIWA
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
KENTARO IGARASHI
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MICHAEL BOUVET
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SHREE RAM SINGH
4Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com singhshr@mail.nih.gov tsuchi@med.kanazawa-u.ac.jp
HIROYUKI TSUCHIYA
3Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com singhshr@mail.nih.gov tsuchi@med.kanazawa-u.ac.jp
ROBERT M. HOFFMAN
1AntiCancer, Inc., San Diego, CA, U.S.A.;
2Department of Surgery, University of California, San Diego, CA, U.S.A.;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: all@anticancer.com singhshr@mail.nih.gov tsuchi@med.kanazawa-u.ac.jp
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Background/Aim: Cancers are selectively sensitive to methionine (MET) restriction (MR) due to their addiction to MET which is overused for elevated methylation reactions. MET addiction of cancer was discovered by us 45 years ago. MR of cancer results in depletion of S-adenosylmethionine (SAM) for transmethylation reactions, resulting in selective cancer-growth arrest in the late S/G2-phase of the cell cycle. The aim of the present study was to determine if blockade of the MET-methylation axis is a highly-effective strategy for cancer chemotherapy. Materials and Methods: In the present study, we demonstrated the efficacy of MET-methylation-axis blockade using MR by oral-recombinant methioninase (o-rMETase) combined with decitabine (DAC), an inhibitor of DNA methylation, and an inhibitor of SAM synthesis, cycloleucine (CL). We determined a proof-of-concept of the efficacy of the MET-methylation-axis blockade on a recalcitrant undifferentiated/unclassified soft-tissue sarcoma (USTS) patient-derived orthotopic xenograft (PDOX) mouse model. Results: The o-rMETase-CL-DAC combination regressed the USTS PDOX with extensive cancer necrosis. Conclusion: The new concept of combination MET-methylation-axis blockade is effective and can now be tested on many types of recalcitrant cancer.

  • Cancer
  • methionine addiction
  • methionine restriction
  • methionine-methylation-axis blockade
  • decitabine
  • cycloleucine
  • MAT2A
  • soft-tissue sarcoma
  • PDOX

Methionine (MET) addiction (1-14) is a fundamental and general hallmark of cancer discovered by us 45 years ago (3). MET addiction is observed in the clinic where the high demand for MET by cancers, results in a strong signal from [11C]-MET-PET imaging (2). MET addiction involves elevated MET flux in cancer cells (3-6) due to excess levels of transmethylation reactions (4), known as the Hoffman effect (7). MET addiction is a general phenomenon in cancer and a crucial target for cancer therapy by MET restriction (MR) which results in depletion of free MET and S-adenosylmethionine (SAM) (5, 6, 10) and selective S/G2-phase cell-cycle arrest in cancer cells (11-13). MET addiction is tightly linked to other hallmarks of cancer (14).

Recombinant methioninase (rMETase) targets MET addiction of cancer cells by severely depleting the sources of cellular MET (1, 15). We demonstrated the effectiveness of oral administration of rMETase (o-rMETase) on many types of chemotherapy-resistant cancers with patient derived orthotopic xenograft (PDOX) mouse models (15-19).

Decitabine [5-aza-2’-deoxycytidine, (DAC)], which is in clinical use for myelodysplastic syndrome and leukemia treatment, is a DNA-methylation inhibitor that incorporates irreversibly into DNA and causes DNA hypomethylation (20, 21). The efficacy of DAC alone for cancer treatment was unsatisfactory (22-26). We recently reported that the combination of o-rMETase and DAC inhibited a recalcitrant undifferentiated/unclassified soft-tissue sarcoma (USTS) PDOX model (27). Cycloleucine (CL), an inhibitor of MET adenosyltransferase-2A (MAT2A), which catalyzes SAM synthesis from MET and ATP, has been shown to lower intracellular SAM (28-30).

Soft-tissue sarcoma is a rare cancer which arises from mesenchymal cells (31). Chemotherapy is used in combination with surgery to treat soft-tissue sarcoma (32). Doxorubicin (DOX) has been used for soft-tissue sarcoma for the past 40 years, but with limited efficacy (31, 33, 34). USTS, formerly known as malignant fibrous histiocytoma, is a frequent type of soft-tissue sarcoma seen in the middle-aged and the elderly (35). The outcome of USTS is usually unsatisfactory when the tumor is resistant to DOX (33, 34).

Based on MET addiction due to excess transmethylation reactions, we hypothesized that CL could be combined with o-rMETase and DAC for MET and methylation blockade for highly effective therapy of the USTS PDOX model. The present report is a proof-of-concept that MET-methylation-axis blockade can effectively target a recalcitrant cancer.

Materials and Methods

Mice. Athymic nude mice, at 4-6 weeks of age, were from AntiCancer Inc. (San Diego, CA, USA). An IACUC protocol was approved for the present study following the principles and procedures described in the National Institutes of Health Guide for the Care and Use of Animals under Assurance Number A3873-1 (36). All surgical procedures were conducted under appropriate anesthesia and analgesia (36).

Patient-derived tumor. A fresh surgical sample from the USTS patient not otherwise specified (NOS), who underwent surgery at UCLA, was previously brought to AntiCancer, Inc. for establishment in nude mice (34). The patient provided written informed consent with UCLA IRB#10-001857 approval (34).

Surgical orthotopic implantation (SOI). A single tumor fragment (2-3 mm), harvested from a subcutaneously-grown tumor in nude mice, was implanted into the nude-mouse biceps, to establish USTS PDOX models, as described in our previous reports (27, 31).

Treatment protocols. The PDOX mouse models (n=6/group) were treated as follows (Figure 1): G1, Untreated control; G2, CL (50 mg/kg, intraperitoneal injection, twice per week); G3, o-rMETase (50 units/mouse, oral gavage, twice per day); G4, DOX (3 mg/kg, intraperitoneal injection, once per week); G5, CL+ DAC (50 mg/kg, intraperitoneal injection, once per day) ; G6, o-rMETase + CL + DAC. Treatment was initiated after all tumors reached at least 100 mm3. Tumor volume and mouse body weight were measured twice per week.

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Treatment schema. DOX: Doxorubicin; o-rMETase: oral recombinant methioninase; DAC: decitabine.

Histological analysis. The procedures for fixation, sectioning, deparaffinizing, and staining of harvested tumor samples were conducted as described previously (37).

Statistical analysis. Data are presented as mean±standard error of the mean (SEM). One-way ANOVA with Tukey’s range test and the Student’s paired t-test were used for statistical analyses.

Results

MET-methylation-axis blockade regressed the sarcoma PDOX. Only the MET-methylation-axis blockade regressed the recalcitrant USTS PDOX tumor (p<0.001). o-rMETase alone (p=0.03), the CL-DAC combination (p=0.003), as well as the rMETase-CL-DAC combination MET-methylation-axis blockade (p<0.001) significantly inhibited the USTS PDOX tumor compared to the control. The o-rMETase-CL-DAC combination had significantly better efficacy than the other treatments: vs. CL alone (p=0.001); vs. o-rMETase alone (p=0.007); or vs. DOX alone (p=0.03). CL alone did not inhibit the tumor (p=0.44) (Figures 2 and 3).

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

(A) Relative tumor volume of the USTS-PDOX model. (B)Waterfall plot of relative tumor volume. Six mice were in each group. *p=0.05; **p=0.01; ***p=0.001. Error bars: ±SEM. USTS, Undifferentiated/unclassified soft-tissue sarcoma; PDOX, patient-derived orthotopic xenograft; o-rMETase, oral recombinant methioninase; CL, cycloleucine; DOX, doxorubicin; DAC, decitabine; SEM, standard error of the mean.

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

(A) Representative photographs of treated USTS PDOX mouse models on day 14. Arrows show the margin of the tumors. (B) Bar graphs indicate relative tumor volume of each group on day 14. Scale bars: 10 mm. 6 mice were in each group. *p=0.05; **p=0.01; ***p=0.001. Error bars: ±SEM. USTS, Undifferentiated/unclassified soft-tissue sarcoma; PDOX, patient-derived orthotopic xenograft; o-rMETase, oral recombinant methioninase; CL, cycloleucine; DOX, doxorubicin; DAC, decitabine; SEM, standard error of the mean.

The combination MET-methylation-axis blockade caused extensive necrosis in the sarcoma PDOX. Only the PDOX tumors treated with the MET-methylation-axis blockade had extensive tumor necrosis. The control USTS PDOX tumor had a high cell density comprising atypical spindle-shaped cancer cells (Figure 4A, A’). USTS PDOX tumors treated with CL alone (Figure 4B, B’), o-rMETase alone (Figure 4C, C’), DOX alone (Figure 4D, D’), and the CL-DAC (Figure 4E, E’) combination showed viable pleomorphic cancer cells; however these groups had less viable cancer cells than the untreated control. The o-rMETase-CL-DAC combination induced widespread necrosis (Figure 4F) with non-viable cancer cells and stroma replaced by degenerative scars (Figure 4F’). These results further showed the efficacy of MET-methylation-axis blockade.

Figure 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 4.

H&E staining. (A, A’) Control. (B, B’) CL alone. (C, C’) o-rMETase alone. (D, D’) DOX alone. (E, E’) CL+DAC. (F, F’) o-rMETase+CL+DAC. Scale bars: 100 μm. o-rMETase, oral recombinant methioninase; DOX, doxorubicin; CL, cycloleucine; DAC, decitabine.

Effect of treatment on body weight. Only treatments containing CL caused body-weight loss: CL alone (p=0.001), the CL-DAC combination (p=0.001), and the o-rMETase-CL-DAC combination (p=0.001) (Figure 5).

Figure 5.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 5.

Mouse body-weight. *p=0.05; **p=0.01; ***p=0.001. Error bars: ±SEM. o-rMETase, oral recombinant methioninase; CL, cycloleucine; DOX, doxorubicin; DAC, decitabine; SEM, standard error of the mean.

Discussion

MET addiction of cancer is due to excess and aberrant transmethylation reactions, that consume much larger than normal amounts of MET (3-6, 10). Lowered DNA methylation is a hallmark of cancer cells, originally discovered in our laboratory (39), and may be due to diversion of methyl groups to other substances such as histones (please see below). Several demethylating agents have been used for cancer treatment (21, 40) including DAC, as well as azacitidine which has been used to treat myelodysplastic syndrome (41). These inhibitors cause hypomethylation of DNA, but had limited efficacy in the clinic (25, 40, 41). In our recent study, a DNA hypomethylating drug alone did not inhibit a USTS-PDOX, but o-rMETase combined with a DNA-hypomethylating drug arrested the PDOX tumors and decreased the cancer-cell density, suggesting the combination of rMETase and a DNA hypomethylating agent could be effective to inhibit tumor growth (27, 37).

In order to enhance MR, we examined the efficacy of the SAM-synthesis inhibitor, CL (30) along with o-rMETase and DAC in the present study. SAM, which plays an important role in transmethylation reactions in all cells, is synthesized from MET by MAT2A (28). CL inhibits SAM synthesis by inhibiting MAT2A, resulting in hypomethylation in the tumor and may increase the DNA hypomethylation efficacy of DAC (28, 30).

CL may be too toxic at the current dose, leading to mouse body-weight loss. Future studies will examine the most effective non-toxic dose of CL for optimal MET-methylation-axis blockade.

o-rMETase has now shown clinical efficacy in a pilot study (42). Recently, a study showing efficacy of a human enzyme engineered to be a METase was published, stating it is superior to the bacterial METase used in the present study, due to its long half-life in the circulation (43). However due to the hardiness of the bacterial enzyme to survive stomach acidity, it could be dosed orally as shown in the present and previous studies (15-19, 27, 37), giving it superiority over the injected engineered human METase. Bacterial o-rMETase is much superior to injected bacterial rMETase (44). Future studies will include determination of the efficacy of MET-methylation-axis blockade on the major cancer types in PDOX models. Recent papers have come out claiming novelty on MET addiction (45, 46), about which we published long ago (2-12, 47-50). Targeting a central aspect of metabolism such as MET and methylation has far more potential for cancer therapy than targeting peripheral metabolism, despite claims of “metabolic dependence” (51). MET addiction, discovered by us, is found in all cancer types and is linked to other hallmarks of cancer (14). All cancer types tested are sensitive to MR, whether by methionine-free media (8, 52), diet (47-49) or methioninase (15-19, 27, 37). A recent study in our laboratory (53) has demonstrated that the combination of o-rMETase, CL and azacytidine arrested a pancreatic cancer PDOX, further demonstrating that blocking the MET-methylation-axis is highly-effective chemotherapy against recalcitrant cancers and has clinical potential. Other recent studies from our laboratory have shown that excess transmethylation that causes MET addiction in cancer cells results in hypermethylation of histone H3 lysine marks (54, 55). These facts suggest MET addiction may be the very basis of cancer (3). Orthotopic mouse models of sarcoma (31) such as that used in the present study, are clinically relevant, unlike ectopic subcutaneous sarcoma mouse models (56). Recently, more potent inhibitors of MAT2A, which is regulated differently in normal and cancer cells (50), have been developed (57) and may be used in MET-transmethylation-axis blockade, which directly targets the elevated flux of methionine in cancer cells, termed the Hoffman effect (58).

Acknowledgements

This paper is dedicated to the memory of AR Moossa, MD, Sun Lee, MD, Professor Jiaxi Li, and Masaki Kitajima, MD.

Footnotes

  • Authors’ Contributions

    Conception and design: TH and RMH. Acquisition of data: TH, QH, NS, JY, NY, KH, HK, SM, and KI. Analysis and interpretation of data: TH, NY, KH, HK, SM, MB, HT, and RMH. Writing, review, and/or revision of the manuscript: TH, HT, SRS, and RMH.

  • This article is freely accessible online.

  • Conflicts of Interest

    The Authors declare no competing interests.

  • Received August 16, 2020.
  • Revision received December 31, 2020.
  • Accepted January 19, 2021.
  • Copyright© 2021, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved

References

  1. ↵
    1. Hoffman RM
    : Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15(1): 21-31, 2015. PMID: 25439528. DOI: 10.1517/14712598.2015.963050
    OpenUrlCrossRef
  2. ↵
    1. Aki T,
    2. Nakayama N,
    3. Yonezawa S,
    4. Takenaka S,
    5. Miwa K,
    6. Asano Y,
    7. Shinoda J,
    8. Yano H and
    9. Iwama T
    : Evaluation of brain tumors using dynamic 11C-methionine-PET. J Neurooncol 109(1): 115-122, 2012. PMID: 22528799. DOI: 10.1007/s11060-012-0873-9
    OpenUrlCrossRefPubMed
  3. ↵
    1. Hoffman RM and
    2. Erbe RW
    : High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73(5): 1523-1527, 1976. PMID: 179090. DOI: 10.1073/pnas.73.5.1523
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Stern PH and
    2. Hoffman RM
    : Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 20(8): 663-670, 1984. PMID: 6500606. DOI: 10.1007/BF02619617
    OpenUrlCrossRefPubMed
  5. ↵
    1. Coalson DW,
    2. Mecham JO,
    3. Stern PH and
    4. Hoffman RM
    : Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79(14): 4248-4251, 1982. PMID: 6289297. DOI: 10.1073/pnas.79.14.4248
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Stern PH,
    2. Wallace CD and
    3. Hoffman RM
    : Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119(1): 29-34, 1984. PMID: 6707100. DOI: 10.1002/jcp.1041190106
    OpenUrlCrossRefPubMed
  7. ↵
    1. Kaiser P
    : Methionine dependence of cancer. Biomolecules 10(4): 568, 2020. PMID: 32276408. DOI: 10.3390/biom10040568
    OpenUrlCrossRef
  8. ↵
    1. Mecham JO,
    2. Rowitch D,
    3. Wallace CD,
    4. Stern PH and
    5. Hoffman RM
    : The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117(2): 429-434, 1983. PMID: 6661235. DOI: 10.1016/0006-291x(83)91218-4
    OpenUrlCrossRefPubMed
    1. Tan Y,
    2. Xu M and
    3. Hoffman RM
    : Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Res 30(4):1041-1046, 2010. PMID: 20530407.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Stern PH,
    2. Mecham JO,
    3. Wallace CD and
    4. Hoffman RM
    : Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine. J Cell Physiol 117(1): 9-14, 1983. PMID: 6311851. DOI: 10.1002/jcp.1041170103
    OpenUrlCrossRefPubMed
  10. ↵
    1. Hoffman RM and
    2. Jacobsen SJ
    : Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12): 7306-7310, 1980. PMID: 6311851. DOI: 10.1073/pnas.77.12.7306
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Yano S,
    2. Li S,
    3. Han Q,
    4. Tan Y,
    5. Bouvet M,
    6. Fujiwara T and
    7. Hoffman RM
    : Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18): 8729-8736, 2014. PMID: 25238266. DOI: 10.18632/oncotarget.2369
    OpenUrlCrossRefPubMed
  12. ↵
    1. Guo H,
    2. Lishko VK,
    3. Herrera H,
    4. Groce A,
    5. Kubota T and
    6. Hoffman RM
    : Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 53(23): 5676-5679, 1993. PMID: 8242623.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Hoffman RM,
    2. Jacobsen SJ and
    3. Erbe RW
    : Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci USA 76(3): 1313-1317, 1979. PMID: 220612. DOI: 10.1073/pnas.76.3.1313.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Kawaguchi K,
    2. Han Q,
    3. Li S,
    4. Tan Y,
    5. Igarashi K,
    6. Murakami T,
    7. Unno M and
    8. Hoffman RM
    : Efficacy of recombinant methioninase (rMETase) on recalcitrant cancer patient-derived orthotopic xenograft (PDOX) mouse models: A review. Cells 8(5): 410, 2019. PMID: 31052611. DOI: 10.3390/cells8050410
    OpenUrlCrossRef
    1. Higuchi T,
    2. Kawaguchi K,
    3. Miyake K,
    4. Han Q,
    5. Tan Y,
    6. Oshiro H,
    7. Sugisawa N,
    8. Zhang Z,
    9. Razmjooei S,
    10. Yamamoto N,
    11. Hayashi K,
    12. Kimura H,
    13. Miwa S,
    14. Igarashi K,
    15. Chawla SP,
    16. Singh AS,
    17. Eilber FC,
    18. Singh SR,
    19. Tsuchiya H and
    20. Hoffman RM
    : Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10): 5639-5644, 2018. PMID: 30275182. DOI: 10.21873/anticanres.12899
    OpenUrlAbstract/FREE Full Text
    1. Igarashi K,
    2. Kawaguchi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyaki M,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Higuchi T,
    11. Singh AS,
    12. Chmielowski B,
    13. Nelson SD,
    14. Russell TA,
    15. Eckardt MA,
    16. Dry SM,
    17. Li Y,
    18. Singh SR,
    19. Chawla SP,
    20. Eilber FC,
    21. Tsuchiya H and
    22. Hoffman RM
    : Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506(4): 912-917, 2018. PMID: 30392912. DOI: 10.1016/j.bbrc.2018.10.119
    OpenUrlCrossRef
    1. Kawaguchi K,
    2. Miyake K,
    3. Han Q,
    4. Li S,
    5. Tan Y,
    6. Igarashi K,
    7. Kiyuna T,
    8. Miyake M,
    9. Higuchi T,
    10. Oshiro H,
    11. Zhang Z,
    12. Razmjooei S,
    13. Wangsiricharoen S,
    14. Bouvet M,
    15. Singh SR,
    16. Unno M and
    17. Hoffman RM
    : Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432: 251-259, 2018. PMID: 29928962. DOI: 10.1016/j.canlet.2018.06.016
    OpenUrlCrossRef
  15. ↵
    1. Miyake K,
    2. Kiyuna T,
    3. Li S,
    4. Han Q,
    5. Tan Y,
    6. Zhao M,
    7. Razmjooei S,
    8. Barangi M,
    9. Wangsiricharoen S,
    10. Murakami T,
    11. Singh AS,
    12. Li Y,
    13. Nelson SD,
    14. Eilber FC,
    15. Bouvet M,
    16. Hiroshima Y,
    17. Chishima T,
    18. Matsuyama R,
    19. Singh SR,
    20. EnDOI and Hoffman RM
    : Combining tumor-selective bacterial therapy with Salmonella typhimurium A1-R and cancer metabolism targeting with oral recombinant methioninase regressed an Ewing’s sarcoma in a patient-derived orthotopic xenograft model. Chemotherapy 63(5): 278-283, 2018. PMID: 30673664. DOI: 10.1159/000495574
    OpenUrlCrossRef
  16. ↵
    1. Sato T,
    2. Issa JJ and
    3. Kropf P
    : DNA hypomethylating drugs in cancer therapy. Cold Spring Harb Perspect Med 7(5): a026948, 2017. PMID: 28159832. DOI: 10.1101/cshperspect.a026948
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Duchmann M and
    2. Itzykson R
    : Clinical update on hypomethylating agents. Int J Hematol 110(2): 161-169, 2019. PMID: 31020568. DOI: 10.1007/s12185-019-02651-9
    OpenUrlCrossRef
  18. ↵
    1. Gailhouste L,
    2. Liew LC,
    3. Hatada I,
    4. Nakagama H and
    5. Ochiya T
    : Epigenetic reprogramming using 5-azacytidine promotes an anticancer response in pancreatic adenocarcinoma cells. Cell Death Dis 9(5): 468, 2018. PMID: 29700299. DOI: 10.1038/s41419-018-0487-z
    OpenUrlCrossRef
    1. Wang X,
    2. Chen E,
    3. Yang X,
    4. Wang Y,
    5. Quan Z,
    6. Wu X and
    7. Luo C
    : 5-azacytidine inhibits the proliferation of bladder cancer cells via reversal of the aberrant hypermethylation of the hepaCAM gene. Oncol Rep 35(3): 1375-1384, 2016. PMID: 26677113. DOI: 10.3892/or.2015.4492
    OpenUrlCrossRef
    1. Kratzsch T,
    2. Kuhn SA,
    3. Joedicke A,
    4. Hanisch UK,
    5. Vajkoczy P,
    6. Hoffmann J and
    7. Fichtner I
    : Treatment with 5-azacitidine delay growth of glioblastoma xenografts: a potential new treatment approach for glioblastomas. J Cancer Res Clin Oncol 144(5): 809-819, 2018. PMID: 29427211. DOI: 10.1007/s00432-018-2600-1
    OpenUrlCrossRef
  19. ↵
    1. Connolly RM,
    2. Li H,
    3. Jankowitz RC,
    4. Zhang Z,
    5. Rudek MA,
    6. Jeter SC,
    7. Slater SA,
    8. Powers P,
    9. Wolff AC,
    10. Fetting JH,
    11. Brufsky A,
    12. Piekarz R,
    13. Ahuja N,
    14. Laird PW,
    15. Shen H,
    16. Weisenberger DJ,
    17. Cope L,
    18. Herman JG,
    19. Somlo G,
    20. Garcia AA,
    21. Jones PA,
    22. Baylin SB,
    23. Davidson NE,
    24. Zahnow CA and
    25. Stearns V
    : Combination epigenetic therapy in advanced breast cancer with 5-Azacitidine and entinostat: A Phase II National Cancer Institute/Stand Up to cancer study. Clin Cancer Res 23(11): 2691-2701, 2017. PMID: 27979916. DOI: 10.1158/1078-0432.CCR-16-1729
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Festuccia C,
    2. Gravina GL,
    3. D’Alessandro AM,
    4. Muzi P,
    5. Millimaggi D,
    6. Dolo V,
    7. Ricevuto E,
    8. Vicentini C and
    9. Bologna M
    : Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer 16(2): 401-413, 2009. PMID: 19153211. DOI: 10.1677/ERC-08-0130
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Higuchi T,
    2. Han Q,
    3. Miyake K,
    4. Oshiro H,
    5. Sugisawa N,
    6. Tan Y,
    7. Yamamoto N,
    8. Hayashi K,
    9. Kimura H,
    10. Miwa S,
    11. Igarashi K,
    12. Bouvet M,
    13. Singh SR,
    14. Tsuchiya H and
    15. Hoffman RM
    : Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 523(1): 135-139, 2020. PMID: 31839218. DOI: 10.1016/j.bbrc.2019.12.024
    OpenUrlCrossRef
  22. ↵
    1. Strekalova E,
    2. Malin D,
    3. Weisenhorn EMM,
    4. Russell JD,
    5. Hoelper D,
    6. Jain A,
    7. Coon JJ,
    8. Lewis PW and
    9. Cryns VL
    : S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast Cancer Res Treat 175(1): 39-50, 2019. PMID: 30712196. DOI: 10.1007/s10549-019-05146-7
    OpenUrlCrossRefPubMed
    1. Kroes AC,
    2. Ermens AA,
    3. Lindemans J,
    4. Schoester M and
    5. Abels J
    : The reduction of intracellular polyamines by sequential inhibition of the synthesis of decarboxylated S-adenosylmethionine: effects on rat leukemia. Cancer Lett 41(3): 295-305, 1988. PMID: 3409208. DOI: 10.1016/0304-3835(88)90291-1
    OpenUrlCrossRefPubMed
  23. ↵
    1. Kroes AC,
    2. Lindemans J and
    3. Abels J
    : Synergistic growth inhibiting effect of nitrous oxide and cycloleucine in experimental rat leukaemia. Br J Cancer 50(6): 793-800, 1984. PMID: 6498076. DOI: 10.1038/bjc.1984.258
    OpenUrlCrossRefPubMed
  24. ↵
    1. Igarashi K,
    2. Kawaguchi K,
    3. Murakami T,
    4. Miyake K,
    5. Kiyuna T,
    6. Miyake M,
    7. Hiroshima Y,
    8. Higuchi T,
    9. Oshiro H,
    10. Nelson SD,
    11. Dry SM,
    12. Li Y,
    13. Yamamoto N,
    14. Hayashi K,
    15. Kimura H,
    16. Miwa S,
    17. Singh SR,
    18. Tsuchiya H and
    19. Hoffman RM
    : Patient-derived orthotopic xenograft models of sarcoma. Cancer Lett 469: 332-339, 2020. PMID: 31639427. DOI: 10.1016/j.canlet.2019.10.028
    OpenUrlCrossRef
  25. ↵
    1. Miwa S,
    2. Yamamoto N,
    3. Hayashi K,
    4. Takeuchi A,
    5. Igarashi K and
    6. Tsuchiya H
    : Therapeutic targets for bone and soft-tissue sarcomas. Int J Mol Sci 20(1): 170, 2019. PMID: 30621224. DOI: 10.3390/ijms20010170
    OpenUrlCrossRef
  26. ↵
    1. Kawaguchi K,
    2. Igarashi K,
    3. Miyake K,
    4. Kiyuna T,
    5. Miyake M,
    6. Singh AS,
    7. Chmielowski B,
    8. Nelson SD,
    9. Russell TA,
    10. Dry SM,
    11. Li Y,
    12. Unno M,
    13. Singh SR,
    14. Eilber FC and
    15. Hoffman RM
    : Patterns of sensitivity to a panel of drugs are highly individualised for undifferentiated/unclassified soft tissue sarcoma (USTS) in patient-derived orthotopic xenograft (PDOX) nude-mouse models. J Drug Target 27(2): 211-216, 2019. PMID: 30024282. DOI: 10.1080/1061186X.2018.1499748
    OpenUrlCrossRef
  27. ↵
    1. Kawaguchi K,
    2. Igarashi K,
    3. Kiyuna T,
    4. Miyake K,
    5. Miyake M,
    6. Murakami T,
    7. Chmielowski B,
    8. Nelson SD,
    9. Russell TA,
    10. Dry SM,
    11. Li Y,
    12. Singh AS,
    13. Unno M,
    14. Eilber FC and
    15. Hoffman RM
    : Individualized doxorubicin sensitivity testing of undifferentiated soft tissue sarcoma (USTS) in a patient-derived orthotopic xenograft (PDOX) model demonstrates large differences between patients. Cell Cycle 17(5): 627-633, 2018. PMID: 29384032. DOI: 10.1080/15384101.2017.1421876
    OpenUrlCrossRef
  28. ↵
    1. Fletcher CD
    : Undifferentiated sarcomas: what to do? And does it matter? A surgical pathology perspective. Ultrastruct Pathol 32(2): 31-36, 2008. PMID: 18446665. DOI: 10.1080/01913120801896945
    OpenUrlCrossRefPubMed
  29. ↵
    1. Higuchi T,
    2. Miyake K,
    3. Oshiro H,
    4. Sugisawa N,
    5. Yamamoto N,
    6. Hayashi K,
    7. Kimura H,
    8. Miwa S,
    9. Igarashi K,
    10. Chawla SP,
    11. Bouvet M,
    12. Singh SR,
    13. Tsuchiya H and
    14. Hoffman RM
    : Trabectedin and irinotecan combination regresses a cisplatinum-resistant osteosarcoma in a patient-derived orthotopic xenograft nude-mouse model. Biochem Biophys Res Commun 513(2): 326-331, 2019. PMID: 30955860. DOI: 10.1016/j.bbrc.2019.03.191
    OpenUrlCrossRef
  30. ↵
    1. Higuchi T,
    2. Sugisawa N,
    3. Yamamoto J,
    4. Oshiro H,
    5. Han Q,
    6. Yamamoto N,
    7. Hayashi K,
    8. Kimura H,
    9. Miwa S,
    10. Igarashi K,
    11. Tan Y,
    12. Kuchipudi S,
    13. Bouvet M,
    14. Singh SR,
    15. Tsuchiya H and
    16. Hoffman RM
    : The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85(2): 285-291, 2020. PMID: 31705268. DOI: 10.1007/s00280-019-03986-0
    OpenUrlCrossRef
    1. Tan Y,
    2. Xu M,
    3. Tan X,
    4. Tan X,
    5. Wang X,
    6. Saikawa Y,
    7. Nagahama T,
    8. Sun X,
    9. Lenz M and
    10. Hoffman RM
    : Overexpression and large-scale production of recombinant L-methionine-alpha-deamino-gamma-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9(2): 233-245, 1997. PMID: 9056489. DOI: 10.1006/prep.1996.0700
    OpenUrlCrossRefPubMed
  31. ↵
    1. Diala ES and
    2. Hoffman RM
    : Hypomethylation of HeLa cell DNA and the absence of 5-methylcytosine in SV40 and adenovirus (type 2) DNA: analysis by HPLC. Biochem Biophys Res Commun 107(1): 19-26, 1982. PMID: 6289818. DOI: 10.1016/0006-291x(82)91663-1
    OpenUrlCrossRefPubMed
  32. ↵
    1. Kulis M and
    2. Esteller M
    : DNA methylation and cancer. Adv Genet 70: 27-56, 2010. PMID: 20920744. DOI: 10.1016/B978-0-12-380866-0.60002-2
    OpenUrlCrossRefPubMed
  33. ↵
    1. Cataldo VD,
    2. Cortes J and
    3. Quintas-Cardama A
    : Azacitidine for the treatment of myelodysplastic syndrome. Expert Rev Anticancer Ther 9(7): 875-884, 2009. PMID: 19589026. DOI: 10.1586/era.09.61
    OpenUrlCrossRefPubMed
  34. ↵
    1. Han Q,
    2. Tan Y and
    3. Hoffman RM
    : Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient. Anticancer Res 40: 2813-2819, 2020. PMID: 32366428. DOI: 10.21873/anticanres.14254
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Lu WC,
    2. Saha A,
    3. Yan W,
    4. Garrison K,
    5. Lamb C,
    6. Pandey R,
    7. Irani S,
    8. Lodi A,
    9. Lu X,
    10. Tiziani S,
    11. Zhang YJ,
    12. Georgiou G,
    13. DiGiovanni J and
    14. Stone E
    : Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proc Natl Acad Sci USA 117(23): 13000-13011, 2020. PMID: 32434918. DOI: 10.1073/pnas.1917362117
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Yang Z,
    2. Wang J,
    3. Lu Q,
    4. Xu J,
    5. Kobayashi Y,
    6. Takakura T,
    7. Takimoto A,
    8. Yoshioka T,
    9. Lian C,
    10. Chen C,
    11. Zhang D,
    12. Zhang Y,
    13. Li S,
    14. Sun X,
    15. Tan Y,
    16. Yagi S,
    17. Frenkel EP and
    18. Hoffman RM
    : PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64(18): 6673-6678, 2004. PMID: 15374983. DOI: 10.1158/0008-5472.CAN-04-1822
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Wang Z,
    2. Yip LY,
    3. Lee JHJ,
    4. Wu Z,
    5. Chew HY,
    6. Chong PKW,
    7. Teo CC,
    8. Ang HY,
    9. Peh KLE,
    10. Yuan J,
    11. Ma S,
    12. Choo LSK,
    13. Basri N,
    14. Jiang X,
    15. Yu Q,
    16. Hillmer AM,
    17. Lim WT,
    18. Lim TKH,
    19. Takano A,
    20. Tan EH,
    21. Tan DSW,
    22. Ho YS,
    23. Lim B and
    24. Tam WL
    : Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 25(5): 825-37, 2019. PMID: 31061538. DOI: 10.1038/s41591-019-0423-5
    OpenUrlCrossRefPubMed
  38. ↵
    1. Gao X,
    2. Sanderson SM,
    3. Dai Z,
    4. Reid MA,
    5. Cooper DE,
    6. Lu M,
    7. Lu M,
    8. Richie JP Jr.,
    9. Ciccarella A,
    10. Calcagnotto A,
    11. Mikhael PG,
    12. Mentch SJ,
    13. Liu J,
    14. Ables G,
    15. Kirsch DG,
    16. Hsu DS,
    17. Nichenametla SN and
    18. Locasale JW
    : Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572(7769): 397-401, 2019. PMID: 31367041. DOI: 10.1038/s41586-019-1437-3
    OpenUrlCrossRefPubMed
  39. ↵
    1. Hoshiya Y,
    2. Guo H,
    3. Kubota T,
    4. Inada T,
    5. Asanuma F,
    6. Yamada Y,
    7. Koh J,
    8. Kitajima M and
    9. Hoffman RM
    : Human tumors are methionine dependent in vivo. Anticancer Res 15(3): 717-718, 1995. PMID: 7645948.
    OpenUrlPubMed
    1. Hoshiya Y,
    2. Kubota T,
    3. Matsuzaki SW,
    4. Kitajima M and
    5. Hoffman RM
    : Methionine starvation modulates the efficacy of cisplatin on human breast cancer in nude mice. Anticancer Res 16(6B): 3515-3517, 1996. PMID: 9042214.
    OpenUrlPubMed
  40. ↵
    1. Hoshiya Y,
    2. Kubota T,
    3. Inada T,
    4. Kitajima M and
    5. Hoffman RM
    : Methionine-depletion modulates the efficacy of 5-fluorouracil in human gastric cancer in nude mice. Anticancer Res 17(6D): 4371-4375, 1997. PMID: 9494535.
    OpenUrlPubMed
  41. ↵
    1. Jacobsen SJ,
    2. Hoffman RM: and
    3. Erbe RW
    : Regulation of methionine adenosyltransferase in normal diploid and simian virus 40-transformed human fibroblasts. J Natl Cancer Inst 65(6): 1237-1244, 1980. PMID: 6253712.
    OpenUrlPubMed
  42. ↵
    1. Chen CC,
    2. Li B,
    3. Millman SE,
    4. Chen C,
    5. Li X,
    6. Morris JP 4th, Mayle A,
    7. Ho YJ,
    8. Loizou E,
    9. Liu H,
    10. Qin W,
    11. Shah H,
    12. Violante S,
    13. Cross JR,
    14. Lowe SW and
    15. Zhang L
    : Vitamin B6 addiction in acute myeloid leukemia. Cancer Cell 37(1): 71-84.e7, 2020. PMID: 31935373. DOI: 10.1016/j.ccell.2019.12.002
    OpenUrlCrossRef
  43. ↵
    1. Stern PH and
    2. Hoffman RM
    : Enhanced in vitro selective toxicity of chemotheraputic agents for human cancer cells based on a metabolic defect. J Natl Cancer Inst 76(4): 629-639, 1986. PMID: 3457200. DOI: 10.1093/jnci/76.4.629
    OpenUrlCrossRefPubMed
  44. ↵
    1. Sugisawa N,
    2. Yamamoto J,
    3. Han Q,
    4. Tan Y,
    5. Tashiro Y,
    6. Nishino H,
    7. Inubushi S,
    8. Hamada K,
    9. Kawaguchi K,
    10. Unno M,
    11. Bouvet M and
    12. Hoffman RM
    : Triple-methyl blockade with recombinant methioninase, cycloleucine, and azacitidine arrests a pancreatic cancer patient-derived orthotopic xenograft model. Pancreas 50(1): 93-98, 2021. PMID: 33370029. DOI: 10.1097/MPA.0000000000001709
    OpenUrlCrossRef
  45. ↵
    1. Yamamoto J,
    2. Han Q,
    3. Inubushi S,
    4. Sugisawa N,
    5. Hamada K,
    6. Nishino H,
    7. Miyake K,
    8. Kumamoto T,
    9. Matsuyama R,
    10. Bouvet M,
    11. Endo I and
    12. Hoffman RM
    : Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochem Biophys Res Commun 533(4): 1034-1038, 2020. PMID: 33019978. DOI: 10.1016/j.bbrc.2020.09.108
    OpenUrlCrossRef
  46. ↵
    1. Yamamoto J,
    2. Inubushi S,
    3. Han Q,
    4. Tashiro Y,
    5. Sun Y,
    6. Sugisawa N,
    7. Hamada K,
    8. Nishino H,
    9. Aoki Y,
    10. Miyake K,
    11. Matsuyama R,
    12. Bouvet M,
    13. Endo I and
    14. Hoffman RM
    : Cancer-specific overmethylation of histone H3 lysines is necessary for methionine addiction and malignancy. bioRxiv, 2020. DOI: 10.1101/2020.12.04.412437
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Marchetto A,
    2. Ohmura S,
    3. Orth MF,
    4. Knott MML,
    5. Colombo MV,
    6. Arrigoni C,
    7. Bardinet V,
    8. Saucier D,
    9. Wehweck FS,
    10. Li J,
    11. Stein S,
    12. Gerke JS,
    13. Baldauf MC,
    14. Musa J,
    15. Dallmayer M,
    16. Romero-Pérez L,
    17. Hölting TLB,
    18. Amatruda JF,
    19. Cossarizza A,
    20. Henssen AG,
    21. Kirchner T,
    22. Moretti M,
    23. Cidre-Aranaz F,
    24. Sannino G and
    25. Grünewald TGP
    : Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat Commun 11(1): 2423, 2020. PMID: 32415069. DOI: 10.1038/s41467-020-16244-2
    OpenUrlCrossRef
  48. ↵
    1. Kalev P,
    2. Hyer ML,
    3. Gross S,
    4. Konteatis Z,
    5. Chen CC,
    6. Fletcher M,
    7. Lein M,
    8. Aguado-Fraile E,
    9. Frank V,
    10. Barnett A,
    11. Mandley E,
    12. Goldford J,
    13. Chen Y,
    14. Sellers K,
    15. Hayes S,
    16. Lizotte K,
    17. Quang P,
    18. Tuncay Y,
    19. Clasquin M,
    20. Peters R,
    21. Weier J,
    22. Simone E,
    23. Murtie J,
    24. Liu W,
    25. Nagaraja R,
    26. Dang L,
    27. Sui Z,
    28. Biller SA,
    29. Travins J,
    30. Marks KM and
    31. Marjon K
    : MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell S1535-6108(20)30658-9, 2021. PMID: 33450196. DOI: 10.1016/j.ccell.2020.12.010 [Epub ahead of print].
    OpenUrlCrossRef
  49. ↵
    1. Lauinger L and
    2. Kaiser P
    : Sensing and signaling of methionine metabolism. Metabolites 11(2): 83, 2021. DOI: 10.3390/metabo11020083
    OpenUrlCrossRef
View Abstract
PreviousNext
Back to top

In this issue

Cancer Genomics - Proteomics: 18 (2)
Cancer Genomics & Proteomics
Vol. 18, Issue 2
March-April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Cancer Genomics & Proteomics.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Combination Methionine-methylation-axis Blockade: A Novel Approach to Target the Methionine Addiction of Cancer
(Your Name) has sent you a message from Cancer Genomics & Proteomics
(Your Name) thought you would like to see the Cancer Genomics & Proteomics web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Combination Methionine-methylation-axis Blockade: A Novel Approach to Target the Methionine Addiction of Cancer
TAKASHI HIGUCHI, QINGHONG HAN, NORIHIKO SUGISAWA, JUN YAMAMOTO, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, MICHAEL BOUVET, SHREE RAM SINGH, HIROYUKI TSUCHIYA, ROBERT M. HOFFMAN
Cancer Genomics & Proteomics Mar 2021, 18 (2) 113-120; DOI: 10.21873/cgp.20246

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Reprints and Permissions
Share
Combination Methionine-methylation-axis Blockade: A Novel Approach to Target the Methionine Addiction of Cancer
TAKASHI HIGUCHI, QINGHONG HAN, NORIHIKO SUGISAWA, JUN YAMAMOTO, NORIO YAMAMOTO, KATSUHIRO HAYASHI, HIROAKI KIMURA, SHINJI MIWA, KENTARO IGARASHI, MICHAEL BOUVET, SHREE RAM SINGH, HIROYUKI TSUCHIYA, ROBERT M. HOFFMAN
Cancer Genomics & Proteomics Mar 2021, 18 (2) 113-120; DOI: 10.21873/cgp.20246
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Rare KMT2A-ELL and Novel ZNF56-KMT2A Fusion Genes in Pediatric T-cell Acute Lymphoblastic Leukemia
  • Salivary CCL20 Level as a Biomarker for Oral Squamous Cell Carcinoma
  • Androgen Receptor and PIM1 Expression in Tumor Tissue of Patients With Triple-negative Breast Cancer
Show more Articles

Similar Articles

Keywords

  • Cancer
  • methionine addiction
  • methionine restriction
  • methionine-methylation-axis blockade
  • decitabine
  • cycloleucine
  • MAT2A
  • soft-tissue sarcoma
  • PDOX
Cancer & Genome Proteomics

© 2021 Cancer Genomics & Proteomics

Powered by HighWire