Abstract
Background/Aim: We have previously developed a novel bone-targeting platinum compound, 3Pt, and showed that it has strong inhibitory activity against osteosarcoma cells and orthotopic cell-line xenograft mouse models. In the present report, we compared the efficacy of 3Pt to cisplatinum (CDDP) in a CDDP-resistant relapsed osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model. Patients and Methods: The tumor of a patient with osteosarcoma of the distal femur was treated with CDDP-based chemotherapy followed by surgery. The surgical specimen was used to establish a PDOX model. An osteosarcoma cell line was also established from the original patient tumor. Osteosarcoma cell viability was assessed with the WST-8 assay and the IC50 values were calculated. The PDOX models were randomized into three groups: untreated control, CDDP-treated group, and 3Pt-treated group. Tumor size and body weight were measured twice a week. Results: 3Pt had a strong concentration-dependent cytocidal effect in vitro. The IC50 value of 3Pt was significantly lower than that of CDDP. On day 14 of the treatment, 3Pt caused a significantly greater tumor growth inhibition compared to the untreated control and CDDP-treated mice. Conclusion: 3Pt is a promising clinical candidate for the treatment of recalcitrant osteosarcoma.
- Received December 27, 2019.
- Revision received February 19, 2020.
- Accepted February 20, 2020.
- Copyright© 2020, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved