
Abstract. We report on next-generation transcriptome
sequencing results of three human hepatocellular carcinoma
tumor/tumor-adjacent pairs. This analysis robustly examined
~12,000 genes for both expression differences and molecular
alterations. We observed 4,513 and 1,182 genes demonstrating
2-fold or greater increase or decrease in expression relative to
their normal, respectively. Network analysis of expression data
identified the Aurora B signaling, FOXM1 transcription factor
network and Wnt signaling pathways pairs being altered in
HCC. We validated as differential gene expression findings in a
large data set containing of 434 liver normal/tumor sample
pairs. In addition to known driver mutations in TP53 and
CTNNB1, our mutation analysis identified non-synonymous
mutations in genes implicated in metabolic diseases, i.e.
diabetes and obesity: IRS1, HMGCS1, ATP8B1, PRMT6 and
CLU, suggesting a common molecular etiology for HCC of
alternative pathogenic origin.

Worldwide, liver cancer is the fifth most common cancer and
the third most common cause of cancer-related mortality (1).
Over 75% of liver cancers are hepatocellular carcinomas
(HCCs), which are adenocarcinomas that occur in the context
of cirrhosis in 60% to 85% of cases (2). Although over 80%
of HCC cases occur in developing countries in Asia and
Africa, incidence is on the rise in developed countries as well
(3-4). This increase has been equally attributed to a rise in
HCV infection and to the worldwide increase in the number
of people with diabetes and obesity (4).

Although the association of HCC with chronic liver
disease is well-established, typically due to liver cirrhosis
resulting from HBV/HCV infection and/or other liver
disease, the exact developmental etiology of HCC remains
undefined. In developed countries chronic liver disease is
most commonly due to non-alcoholic fatty liver disease
(NAFLD), which encompasses a spectrum of liver disorders,
ranging histopathologically from the milder hepatic
steatosis/isolated fatty liver to the more aggressive non-
alcoholic steatohepatitis (NASH). It is NASH that may
progress to liver cirrhosis, ultimately leading to further
complications such as hepatic failure and HCC (3, 5-7). 

Next-generation sequencing (NGS) of the complete RNA
transcriptome (RNA-seq) offers a novel approach for
systematically characterizing the underlying molecular
etiology of HCC. RNA-seq not only permits for the accurate
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measurement of transcript expression levels, but also reliably
identifies and assesses rare RNA species, alternative splicing,
base substitutions, insertions and deletions (indels), allele-
specific expression and RNA editing (8-10). In the present
study, we report on a survey of the complete transcriptome
landscape and the mutation profile of hepatocellular
carcinoma using RNA-seq in three pairs of HCC tumor and
tumor-adjacent tissue samples. Key findings observed in the
present survey are examined in larger collections of tumor
and normal samples in order to establish robust evidence of
prevalence and validity.

Materials and Methods 

Tissue samples. All tissue samples in the present study were
collected anonymously at the Asan Medical Center in South Korea
during 1998-2001. The study design adhered to all NIH standards
for human subject research and was approved by the NIH office of
Human Subject Research. RNA was isolated from three HCC tumor
(PHC9824, PHC9826 and PHC9828) and adjacent normal samples
(PHC9823, PHC9825 and PHC9827). Two of the normal/tumor
pairs (PHC9823/24 and PHC9827/28) were HCV-infected; the third
pair (PHC9825/26) was HCV/HBV-negative.

RNA Sequencing Method. Total RNA was isolated from three HCC
tumor and normal adjacent tissue pairs using the RNeasy kit (Qiagen)
according to the manufacturer’s instructions. Double-stranded cDNA
was generated using random hexamer primers and reverse
transcriptase. Sequencing adaptors were ligated using the Illumina
Genomic DNA sample prep kit. Fragments (approximately 340-bp
long) were isolated by gel electrophoresis and amplified by limited
cycles of PCR. Large-scale deep sequencing was carried out on the
Illumina Solexa Genome Analyzer, as described in the Illumina
mRNA expression analysis protocol (http://www.illumina.com).

Mapping of RNA-seq reads to the genome. Mapping of RNA deep
sequencing reads from three pairs of liver tumor and matched
normal tissues was carried out using Burrows-Wheeler Aligner
(BWA: http://bio-bwa.sourceforge.net/). Reads of 75mer were
mapped to four reference databases: hg18 (NCBI build 36), refFlat,

alternative-splicing exons and ESTs. Our alternative-splicing
database consists of all sequential combinations of non-adjacent
exons that are not found in the RefFlat database. EST exon
sequences were extracted from the hg18 sequence using exon
coordinates in the UCSC intronEst table. 

Differentially expressed genes in RNA-seq. We have already reported
on the normalized expression values as RPKM (reads per kilobase
of exon model per million mapped reads) (8). For a given gene,
reads were normalized against exon size and the number of reads
sequenced to generate the RPKM value. Log2 ratios of RPKM
values were calculated for each gene in paired tumor and adjacent
normal samples. 

To validate the differentially expressed genes identified from
RNA-seq analysis, we downloaded a large HCC gene expression
dataset from GEO repository with the accession number of
GSE14520 GPL3921 (http://www.ncbi.nlm.nih.gov/geo) which
contains 212 liver normal tissues and 222 liver tumor tissues (11).
Profiling was performed on an Affymetrix HT HG-U133A platform
and the data were normalized using Robust Multi-array Average
(RMA) method and global median centering (11). We extracted the
data for the genes overlapping with the ones shown on the
differential expressed gene list. In the case of genes with multiple
probe sets, the maximum gene expression was calculated. The t-
statistics were used to compare the gene expression between liver
normal and tumor tissues.

Single-nucleotide variant (mutation) calls. Somatic non-silent
mutations (missense, non-sense, frameshift) were identified by our
in-house software, Bambino (12) and by VarScan (version 2.2, Wash
U) (13) from BAM files for each paired tumor and adjacent normal
samples. Two criteria were applied: 1) Mutations from Bambino
with a minimum of 4× coverage, greater than 10% alternative allele
frequency in tumor samples and less than 1% alternative allele
frequency in normal samples; and 2) mutations from Bambino
which did not meet the previous criteria but showed a p-value <0.05
in VarScan. All somatic non-silent mutations were manually
reviewed by examining the alignment in Bambino alignment view. 

Mutation validation. Sanger sequencing was applied to PCR
products generated using both cDNA and genomic DNA templates.
We validated the candidate variants in cDNA and genomic DNA
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Table I. Summary of mapping data generated by RNA-seq. 

Sample Total Mapped RefSeq exon Non-RefSeq exon EST exon Genes Genes 
reads reads junction reads junction reads junction reads (reads ≥1) (rpkm ≥1)

PHC98023 35 M 28 M 81% 7 M 19% 28 K 0.08% 561 K 1.59% 17,471 11,087
PHC98024 38 M 30 M 80% 9 M 24% 47 K 0.12% 520 K 1.37% 17,383 11,421
PHC98025 35 M 31 M 88% 9 M 26% 32 K 0.09% 439 K 1.26% 16,981 10,415
PHC98026 39 M 35 M 89% 9 M 24% 48 K 0.12% 416 K 1.07% 17,335 10,819
PHC98027 41 M 36 M 86% 10 M 23% 48 K 0.12% 866 K 2.09% 17,188 10,987
PHC98028 41 M 36 M 89% 10 M 24% 50 K 0.12% 648 K 1.59% 18,420 12,481

Column 1: sample identification number; column 2: total sequencing reads for each sample; column 3: number of mapped reads and percentage of
total reads that were mapped; columns 4, 5, 6: number of reads and percentage of total reads that cross an exon junction and map to RefSeq exons
(column 4), non-RefSeq exons (column 5), and EST exon junctions (column 6); column 7: number of genes that are represented by ≥1 read; column
8: number of genes normalized by RPKM ≥1. RPKM, reads per kilobase of exon model per million mapped reads.



with primers designed by the primer3 program (14). Sanger
sequencing was performed on the PCR products. Each
chromatogram was base-called with Phred using the option designed
to generate a polymorphism file, which details secondary and
alternate base call information (15). 

Prediction of AA substitution using logE and SIFT. LogE (16) and
SIFT (17) are used to predict the AA substitution. A logE score
whose absolute value is greater than or equal to 1 indicates that the
amino acid alteration is likely to affect protein (16). SIFT value
≤0.05 is predicted to be deleterious (17).

Pathway analysis of differentially expressed and validated mutated
genes. We analyzed the differentially expressed genes and mutated
genes by identifying over-represented pathways and by constructing
gene-gene networks. Differentially expressed genes were mapped to
pathways in the Pathway Interaction Database (PID) (18) and the
significance of an individual pathway’s being affected was
computed using R’s hyper-geometric distribution function, adjusted
for multiple hypothesis testing using the Benjamini-Hochberg false
discovery rate (19). Differentially expressed genes were also
assembled into novel networks with direct interactions obtained
from PID. 

Analysis of copy number variation using Affymetrix SNP6.0 assay.
The Affymetrix SNP6.0 assay was performed according to the
manufacturer’s instructions (Affymetrix, Santa Clara, CA, USA).
Assay runs were performed in 96 well plates containing three tumor
and normal adjacent samples, four Asian HapMap samples
(NA18954, NA18971, NA18603 and NA18995), the Affymetrix103
control DNA and a negative control (H2O). Data generated by
SNP6.0 assays was analyzed with the Affymetrix Genotyping
Console version 3.0 birdseed algorithm. Samples were analyzed for
copy number variation using the Affymetrix Genotyping Console
program with default parameters and the HapMap270 reference
model. The resulting copy number log2ratio data served as input for
the R DNAcopy package, which implements the circular binary
segmentation (CBS) algorithm (20). We converted fractional CBS
copy number values to discrete copy number states using the
following thresholds: CBS copy number <=1.8 represents copy
number loss; CBS copy number >=2.2 indicated copy number gain. 

Results

The complete workflow process for mapping the RNA-seq
data from our HCC tumor samples (PHC98024, PHC98026
and PHC98028) is described in Figure 1. 

Identification of differentially expressed genes by RNA-Seq.
For expression analysis, the number of reads mapped to exon
regions of each gene was calculated and normalized using the
RPKM method (8). Our data revealed ~17,500 genes with at
least one read and ~12,000 genes with RPKM ≥1 (Table I).
These findings are consistent with previous reports that 10-
12,000 genes are expressed in normal/cancerous liver tissue
(21). Our initial analysis used RPKM >1 for tumor or normal
and fold change between tumor and normal of >2 in at least
2 sample pairs. Applying these thresholds, we identified 4,513

up-regulated and 1,182 down-regulated genes in tumors
compared to matched normal samples (Table II). 

When the most stringent filter (RPKM ≥10 for tumor with
RPKM ≤1 for normal and fold change ≥10) was applied to
gene expression levels, a total of 58 genes were identified as
up-regulated in at least two tumor-normal pairs (Table II and
Figure 2). Out of these 58 genes, 26 have been previously
identified as differentially expressed in HCC, while the
remaining 32 have not been reported for HCC to date.
Additionally, a total of 98 genes were down-regulated when
similar strict criteria (RPKM ≤1 for tumor with RPKM ≥10
for normal and fold change ≥10) were applied (Table II and
Figure 2). This sub-set of 58 up-regulated and 98 down-
regulated genes were then subjected to additional analyses.
To more robustly assess the prevalence of the differential
expression of these 156 genes, we obtained a large HCC
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Figure 1. Mapping Workflow. The above workflow diagram illustrates the
sequence of steps involved in the alignment and mapping of reads to the
human genome (hg18). Reads are trimmed and mapped to the RefSeq, EST,
and hg18 databases. The best mapping for each read is selected to build
the final BAM files in hg18 coordinates. UCSC: University of California
Santa Cruz Genome Browser (http://genome.ucsc.edu); BWA: Burrows-
Wheeler Alignment tool (http://bio-bwa.sourceforge.net/); SAMtools -
utilities for manipulating alignments in the SAM/BAM format
(http://samtools.sourceforge.net/); Bambino - an in-house single-nucleotide
variation (snv) call program (https://cgwb.nci.nih.gov/); VarScan – a variant
call program from Washington University (http://varscan.sourceforge.net/).



gene expression dataset from the GEO repository
(http://www.ncbi.nlm.nih.gov/geo) (11), containing 434 liver
tissues with 212 normal and 222 tumor tissues. Only 118 of
156 differentially expressed genes were assayed in this
dataset. Over 90% of the 118 genes had the same expression
pattern as in the original RNA-seq data and showed
statistically significant differential expression between
normal liver and tumor tissues (FDR<0.01). 

Identifying somatic mutations associated with HCC. The
RNA-seq data revealed a total of 712,451 single-nucleotide
variants (SNVs) present in tumor and/or normal tissues
(Table III). We focused our subsequent analyses on the 149
non-synonymous somatic mutations. Among these, 124
have not been previously reported in HCC except for
CTNNB1 and TP53. Sixty-three of the mutations exhibited
≥30% frequency reads for the alternative allele in one
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Figure 2. Diagrammatic representation of expression levels, non-synonymous mutations, translocations, and copy number variations in the mRNA
sequences of three HCC tissue samples. Chromosome ideograms are displayed along the outer ring (track 1); these are oriented pter-qter in a clockwise
direction with centromeres indicated in blue. From outside to inside, the track just internal to the chromosome ideogram represents differential expression
of genes at each locus (track 2). Orange bars indicate 58 up-regulated genes and blue bars indicate 98 down-regulated genes. Thirty non-synonymous
mutations appear as red lines in the next track (track 3), copy number variation is indicated in the next track in dark green lines (track 4). The innermost
track consists of light green lines depicting inter-chromosomal re-arrangements and blue lines depicting intra-chromosomal re-arrangements (track 5).



tumor but not in the paired normal tissue. Among these 63
mutations, 30 mutations from 29 genes could be validated
by Sanger sequencing as shown in Table III and Figure 2,
track 4, red lines. Only TP53 was mutated in two samples.
To more robustly assess prevalence of mutations identified
from this transcriptome-wide survey, we performed follow-
up analysis of an additional 25 sets of paired HCC tumor

samples and matched control tissues. This analysis
revealed that approximately one-third of HCC samples
were mutated in the TP53 gene. Two of these TP53-
mutated HCC samples were also mutated in the CTNNB1
gene; one of these samples had 2 TP53 mutations. No
other genes were found to have recurrent mutations in the
extended sample set.
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Figure 3. Network diagram of the interaction of a subset of the 58 up-regulated and 98 down-regulated genes. Up-regulated genes are highlighted
in red and the down-regulated genes are highlighted in blue. Twenty-one up-regulated and six down-regulated genes form a network. Nineteen of these
27 genes form a major gene-gene interaction network. Out of these 19 genes, eight genes (CCNB2, CDCA8, DNM1, KIF2C, NKD1, RACGAP1,
VCAN, and MST1) have been previously reported in HCC; to date, the other 13 genes have not been documented in HCC. Each gene is connected
by a solid line to each of the other genes with which it interacts. Theses interacting genes are displayed as small solid squares.



To evaluate whether the 30 validated mutations are likely
to alter protein function, we performed two different
statistical analyses, SIFT and LogE (16-17). Both algorithms
identified three genes in which the observed mutation was
predicted to confer deleterious effects on protein function
(Table IV). SIFT identified 13 potentially deleterious

mutations that were not detected by LogE; LogE identified
one potential functionally significant mutation not detected
by SIFT (Table IV). The two TP53 mutations were predicted
to be deleterious by both algorithms.

Pathway analysis of differentially expressed genes. Next, we
performed pathway analysis using the up-regulated and
down-regulated genes. For a pathway to be considered
statistically significant, two or more of differentially
expressed genes must “hit” that pathway, with an FDR
adjusted p-value of <0.01. When the set of up- and down-
regulated genes was analyzed, the Aurora B signaling,
FOXM1 transcription factor network and Wnt signaling
pathways were observed to be significantly associated with
HCC (Table V). 

Next we performed gene-gene network analysis to
examine whether the 58 up-regulated genes and 98 down-
regulated genes interact with each other and form a network.
To perform this, we leveraged the gene-gene interaction data
present in the NCI/Nature PID. As shown in Figure 3, 27 of
these genes are highly connected hubs in a novel, complex
network. Importantly, 19 of the 27 hub genes have not yet
been reported in hepatocellular carcinoma.

Pathway analysis of mutated genes. We carried out further
pathway analysis using the 29 genes with 30 validated
mutations by applying the same analytical approach as the
one used for the expression pathway analysis. Only six
(CTNNB1, DOCK10, HMGCS1, IRS1, SMG5, TP53) of the
29 mutated genes are present in canonical pathways. These
genes are distributed among 38 pathways in a manner such
that no more than one gene “hit” any individual pathway.

In order to gain insight into whether these mutated genes
interact to form a larger network, we used an approach that
was similar to the pathway analysis for gene expression
differences. We discovered that four of the mutated genes
(TP53, IRS1, CTNNB1 and SMG5) form a complex network
(Figure 4). 

As the remaining mutated genes are not contained in any
of the pathways in the PID, we performed analyses of these
genes using Gene Ontology and found that many were
associated with liver metabolism (Table IV). 
DNA copy number variations and their association with
mutation and expression. When DNA copy number
variations (CNVs) were determined for the three paired
tumor-matched normal sample sets using the Affymetrix
SNP6.0 platform, we identified 18,000 non-overlapping
autosomal segments for which at least one HCC tissue
sample showed CNV relative to its paired normal tissue
sample. Sixteen segments demonstrated copy number gain in
all 3 tumors. These copy number gain segments were located
in six broad chromosomal regions: 1q21-44, 2q31, 3p24,
8q24, 17q11-12 and 20p12. Sixty-nine segments showed
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Figure 4. Gene interaction network of a subset of the 29 mutated genes.
Only the four mutated genes that exhibit multiple interactions (IRS1,
TP53, CNNB1 and SMG5) are shown in the present figure. Mutated
genes are highlighted in red. The genes with which they interact are
shown as small solid squares, each of which is connected by a solid line
to its interacting mutated gene. The IRS1 interacts with many other
genes including BCAR1, IGF1, IGF1R, IL2RG, IL4, IL4R, INS, INSR,
IRS2, JAK1, JAK3, PIK3CA, PIK3R1, SH2B2, and SOS1. SMG5
interacts with DKC1, HDAC8, HSP90AA1, PRKACA, TGES3 and TER. 
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Figure 5. Genome alterations observed in three HCC samples. Copy number alterations are indicated by shading: red and pink represent copy number gain
(red greater than pink) relative to the normal adjacent sample; dark blue to light blue represent copy number loss (dark blue greater than light blue)
relative to the matched normal adjacent sample; grey represents no copy number alteration. Yellow diamonds mark the locations of the subset of frequently
overexpressed genes that are up-regulated in a particular sample. Black vertical hashes mark the locations of validated non-synonymous somatic mutations
identified in a sample. Chromosome numbers are listed on the left side and sample identification numbers are listed at the top of each figure. 



copy number loss in all three tumors relative to their matched
normal tissues. The largest of these recurrent regions of loss
are located in 17p12-13, 19p13 and 10q21-26 (Figure 5). 

We then mapped the 30 validated mutations onto CNV
segments. Sixteen mutations lie in regions of copy number

loss; 14 mutations lie in regions that do not show copy
number alterations relative to adjacent normal tissue. Two
genes, NDS1 and ATP8B1 genes are altered in all 3 tumor
samples with mutation in sample PHC98028 and copy
number reduction in samples PHC98024 and PHC98026.
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Table III. Summary statistics of somatic non-synonymous mutation discovery.

Filtering Tools Samples

PHC98024 PHC98026 PHC98028 Total

Bambino 260,022 206,623 245,806 712,451
Bambino (dbSNP) 29,938 29,497 37,298 96,733
Putative somatic mutations (non-synonymous only) 139 113 93 345
Putative somatic mutations (non-synonymous, dbSNP) 14 2 12 28
After manual review 56 43 50 149
After manual review (dbSNP) 11 2 12 25
Validated (Sanger sequencing) 12 4 14 30
Validated (dbSNP) 2 0 2 4

The following steps were used as filters to identify the final set of somatic mutations: 1) Bambino software identified a total of 712,451 variants out
of which 96,733 were present in the dbSNP database; 2) 345 non-synonymous mutations were identified, out of which 28 were in dbSNP; 3) the
mutations were then filtered using manual review alignments, revealing 149 mutations out of which 25 were in dbSNP; and 4) as a final step, sixty-
three mutations with ≥30% alternative allele frequency were selected for validation by Sanger sequencing. The validation confirmed 30 mutations,
out of which 4 were in dbSNP.

Table II. 

A. Assessment of differentially expressed genes.

Expression Up-regulated Down-regulated
(≥2 samples) (≥2 samples) 

RPKM Fold change 

t≥1 or n ≥1 2 4,513 1,182
t≥10 and n ≤1 ≥10 58 −
t≤1 and n ≥10 ≥10 − 98

The expression level in reads per kilobase of exon model per million mapped reads (RPKM) and fold change of the three tumor/non-tumor pairs.
Only genes up- or down-regulated in at least 2 out of 3 samples are counted. t: Expression level in tumor samples in RPKM; n: expression level in
normal samples in RPKM; fold: the fold change of the expression level in tumor relative to non-tumor tissue in paired tumor − non-tumor samples. 

B. Complete list of up/down regulated genes
Up-regulated
ADRA2C,ALDH3A1,APCDD1,AURKB,AXIN2,BIRC5,BMP4,BUB1,C12orf75,C1QTNF3,C6orf173,CCNB1,CCNB2,CDC2,CDC45L,CDCA3,CDCA5,
CDCA8,CDKN3,CDR2L,CDT1,COL7A1,DBNDD1,DKK1,DNM1,DYNC1I1,EPHB2,FAM83D,FOXM1,IRX3,KIAA0101,KIF20A,KIF2C,LARP6,LEF1,
LPPR1,MAGED4,MAGED4B,MAP2K6,MMP11,MYBL2,NCAM1,NEK2,NKD1,PEG10,RACGAP1,REG3A,RNF43,SLC22A11,SLC6A8,SP5,TOP2A,TP
BG,TROAP,TSPAN5,TUBB3,USH1C,VCAN

Down-regulated
ACOT12,ADH1A,AFM,AGXT,AKR1D1,APOA4,APOF,AQP7,ASPG,BHMT,C3P1,C8A,C9,C9orf150,CDA,CLEC4G,CNDP1,COLEC10,CPS1,CRHBP,
CRP,CXCL14,CYP2A7,CYP2C9,CYP2D6,CYP2E1,CYP3A7,CYP4F2,CYP8B1,DBH,DGAT2,ECHDC3,ECM1,F11,F12,F2,FAM99A,FAM99B,FCN2,F
ETUB,FGL1,FLJ23569,G6PC,GBA3,GBP7,GLS2,GLYATL1,GPD1,HAL,HGFAC,HMGCS2,HPD,HPGD,HPN,HSD17B13,HYAL1,IGFALS,ITIH3,KL
KB1,KNG1,KRT7,LOC100128675,LOC284422,LOC388503,MARCO,MBL2,MST1,MT1H,MUPCDH,OGDHL,OSTalpha,PCDH24,PLG,PON1,PON3,
PRODH2,RAB17,SDCBP2,SERPINA3,SERPINA6,SHBG,SLC10A1,SLC27A2,SLC2A9,SLC38A3,SLC6A1,SLCO1B1,SLPI,SOCS2,SPP2,TMEM82,TM
PRSS6,TTC36,UPB1,UROC1,VIPR1,VNN1,XDH



In similar fashion, we investigated possible correlations
of gene expression with copy number alterations. We
observed that of the 58 up-regulated genes, only PEG10,
RNF43, AXIN2, MAP2K6, BIRC5 and APCDD1 are located
at positions exhibiting recurrent patterns of copy number

gain. Mapping of the 98 down-regulated genes onto CNV
regions revealed that 42 genes (43%) map to regions with
frequent copy number loss. In contrast, six down-regulated
genes are located in genomic regions showing recurrent
copy number gain. 
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Table IV. Mutations and predicted effects of amino acid changes.

Gene symbol Description Sample ID Nucleotide Amino acid LogE/ 
change change SIFT*

AEBP2 AE binding protein 2 98024 A>G M377V -/t
ATP8B1** ATPase, class I, type 8B, member 1 98028 G>T N899K -/d
CARD9 Caspase recruitment domain family, member 9 98028 C>A A331S -/t
CLU** Clusterin 98026 G>A H37Y -/t
CTNNB1* Catenin (cadherin-associated protein), beta 1, 88kDa 98028 C>A S37Y -/d
DOCK10 Dedicator of cytokinesis 10 98024 T>G E2129A d/d
FAM160B2 Family with sequence similarity 160, member B2 98024 A>G T315A -/t
FAM63A Family with sequence similarity 63, member A 98024 T>G E168A -/t
FKBP15 FK506 binding protein 15, 133kDa 98024 T>C H515R -/d
HMGCS1** 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 98026 T>C T125A t/d
IRS1** Insulin receptor substrate 1 98024 T>C T793A -/t
KDM4B Lysine (K)-specific demethylase 4B 98028 T>A F203I t/d
KIAA0232 KIAA0232 98026 A>G I1100V -/d
MRPL44 Mitochondrial ribosomal protein L44 98028 G>T A21S -/t
MTMR4 Myotubularin related protein 4 98028 T>C Y1121C t/d
NSD1 Nuclear receptor binding SET domain protein 1 98028 C>A R1661S -/d
NUDCD2 NudC domain containing 2 98024 G>T D116E -/t
PGM2** Phosphoglucomutase 2 98028 G>T A574S -/t
PITRM1 Pitrilysin metallopeptidase 1 98028 T>A Q8L t/d
POLA2 Polymerase (DNA directed), alpha 2 98028 T>C F337S -/t
PRMT6** Protein arginine methyltransferase 6 98028 C>T A135V -/t
PSMD1 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 1 98028 A>G Y147C -/d
QRICH1 Glutamine-rich 1 98028 T>C Y550C -/d
SMG5 Smg5 homolog, nonsense mediated mRNA decay factor 98024 C>T V794I -/d
SP2 Sp2 transcription factor 98026 A>T Q131L -/d
TMEM39B Transmembrane protein 39B 98024 T>C F323S -/t
TP53* Tumor protein p53 98028 G>A P278S d/d
TP53* Tumor protein p53 98024 T>C Y236C d/d
VPS16 Vacuolar protein sorting 16 homolog 98024 G>A A235T d/t
WWC1 WW and C2 domain containing 1 98024 A>T E862V -/t

*Genes previously identified as being involved in HCC. **Genes involved in metabolism.A logE score less than -1 or greater than 1 indicates the
amino acid change is likely to affect protein function; a SIFT score less than or equal to 0.05 predicts that the amino acid variant is deleterious (see
Methods). Results are indicated in the last column: *LogE and SIFT results: t, tolerant; d, deleterious; na, not analyzed; -, no. 

Table V. Pathway analysis of 58 up-regulated and 98 down-regulated genes.

FDR Pathway Genes

2.14E-06 Aurora B signaling AURKB,BIRC5,BUB1,CDCA8,KIF20A,KIF2C,RACGAP1
2.64E-05 FOXM1 transcription factor network AURKB,BIRC5,CCNB1,CCNB2,FOXM1,NEK2
1.79E-03 Canonical Wnt signaling pathway AXIN2,DKK1,LEF1,NKD1
6.57E-03 Signaling by Aurora kinases AURKB

Pathways that are statistically significantly associated with the subset of genes that are up-regulated or down-regulated in HCC tumor versus normal
tissue. These pathways are derived from the NCI/Nature PID and are considered to have statistically significant associations when correction for the
FDR (false discovery rate) has a p<0.01.



Discussion

Considerable heterogeneity exists in the somatic genetic
etiology of HCC. Although the origin of this heterogeneity
is still unknown, molecular studies of HCC suggest a
connection not only with HBV/HCV infection, but also with
abnormalities of metabolic balance, such as diabetes and
obesity (22-23). To address this issue, we surveyed three
paired HCC and adjacent normal tissue samples using RNA-
seq. We identified differentially expressed genes as well as
somatic mutations. We observed 58 up-regulated and 98
down-regulated genes in tumor samples when compared to
adjacent normal liver tissue (Table II). Aurora B signaling,
FOXM1 transcription factor network and Wnt signaling
pathways are significantly enriched in the differentially
expressed genes of HCC. Only Wnt the signaling pathway
has been previously implicated in the development of HCC.
Thus, all pathways, which play a key role in cell
proliferation, cytokinesis and DNA repair, may be involved
in the development and progression of HCC (11, 24-25). 

Gene-gene network interaction analysis of the 156
differentially expressed genes revealed that 27 genes form a
large complex network (Figure 3). This analysis allowed us
to investigate new networks that have not previously been
associated with HCC. The following up-regulated genes were
identified by this analysis: KIF2C and CDCA8, key
components of the Aurora B signaling pathway (24, 26);
NKD1, a major component of the Wnt signaling pathway
(27); CCNB2, a key member of the FOXM1 pathway (28);
RACGAP1, a key member of the cytokinesis pathway (29);
and DNM1, Dynamin, a large GTPase involved in clathrin-
mediated endocytosis and other vesicular trafficking
processes (30). As discussed above, only genes belonging to
the Wnt signaling pathway have previously been documented
in relation to HCC carcinogenesis. With regard to the down-
regulated genes, HMGCS2 (3-hydroxy-3-methylglutaryl-
coenzyme A synthase) and PLG (plasminogen) are newly-
identified in HCC and have functions that are of interest
from the perspective of carcinogenesis. HMGCS2 expression
is associated with differentiation and its down-regulation has
been demonstrated in moderately- and poorly-differentiated
colorectal adenocarcinomas (31). The protein encoded by the
PLG gene, plasminogen, is a secreted blood zymogen and is
converted to plasmin and angiostatin when activated by
proteolysis. Angiostatin, in turn, is a potent inhibitor of
angiogenesis, tumor growth and metastasis; consistent with
the notion that angiogenesis contributes to carcinogenesis in
tumors characterized by down-regulated PLG. 

HCC typically develops in the setting of liver cirrhosis,
which is associated with chronic liver disease (1). The
current dominant view is that non-viral associated HCCs
evolve in tissue that has been subjected to physiological
insults. For example, disruption of normal metabolic balance

results in an increase in the release of free fatty acids (FFA)
from adipocytes, release of multiple pro-inflammatory
cytokines including tumor necrosis factor-alpha (TNF),
interleukin-6 (IL6), leptin, and resistin (7). Together, the
elevated levels of such factors contribute to abnormal hepatic
conditions, including NAFLD and NASH, which may
progress to cirrhosis and ultimately to HCC (7). Among the
30 mutations identified in our tumor samples six are located
in genes that are implicated in metabolic processes, five of
which are involved in diseases such as diabetes and obesity:
IRS1, HMGCS1, ATP8B1, PRMT6 and CLU (Table IV).
IRS1 is known to be involved in diabetes, obesity and

activation of cytokine signaling pathways (32-33). In
addition, overexpression of IRS1 has been documented in
over 90% of HCC cases (34). Yet, mutations in IRS1 have
not previously been reported in HCC. The identification of
a novel non-synonymous mutation in codon 793 (threonine
to alanine) potentially alters the activity of the IRS1 protein.
The position of this mutation supports such a functional
effect since the mutation is adjacent to Ser794, which has
previously been shown to play a critical role in insulin signal
transduction (35-36). Changes in the phosphorylation state
of Ser794 are associated with a variety of insulin-mediated
activities (35, 37). Specifically, phosphorylation of this
amino acid alters the efficiency of insulin signal
transduction, eventually causing insulin resistance in diabetic
animals (37). The multiple roles played by phosphorylated
Ser794 are potentially influenced by the mutation that we
observed in the neighboring Thre793. Thus, this discovery
of an IRS1 mutation in HCC suggests that dysregulated IRS1
may play a role in the etiology of liver cancer. 

Interaction analysis of canonical pathways contained in the
PID (Figure 4) reinforces the potential importance of the role
played by IRS1 in HCC tumorigenesis. Thus, network analysis
of all possible interactions among the 29 mutated genes in our
study revealed that the network comprises four hub genes:
IRS1, TP53, CTNNB1 and SMG5. All four of these network-
interacting mutated genes individually affect processes known
to be dysregulated in cancer. Apart from TP53, the most
commonly mutated gene in cancer, CTNNB1, encodeing beta-
catenin, is frequently mutated in specific cancers, including
colon cancer and HCC (38-39). The fourth gene in the
network hub is SMG5, which is involved in protection of
telomere integrity, and thus maintenance of chromosomal
stability (40). Furthermore, degradation of SMG5 results in a
major reduction of total telomerase activity (41).
TP53 mutation has a well-established association with

many cancers, including HCC. HCV-infected cells exhibit a
tendency toward increased mutation rate, leading to a 5-10-
fold increase in mutation frequency of genes such as the
immunoglobulin heavy chain gene, BCL-6, TP53, and the
CTNNB1 gene (39). Our own initial observations concur,
given that two of our three original liver cancer samples
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infected with HCV are also the same two that exhibit
mutations in the TP53 gene. In addition, 50% of the
additional 25 HCC tissues which we analyzed exhibited
TP53 mutations; these TP53-mutated samples were also
positive for HBV infection, unlike the other 50% HCC
samples, which were TP53-mutation negative. Furthermore,
out of the three HCC samples (Figure 5), the two samples
with HCV infection and TP53 mutation (PHC98024 and
PHC98028) exhibited the highest levels of copy number
variations. This observation is consistent with the known role
of the TP53 protein in maintaining genomic stability via the
DNA repair mechanisms (42). In contrast to the common
epithelial cancers such as breast, prostate, and colon, HCC
is not characterized by a high rate of mutations in
conventional oncogenes and tumor suppressor genes, other
than TP53 (43). The results of our study are consistent with
a model in which HCC development is associated with
metabolic changes due to HCV/HBV infection, diabetes,
obesity or metabolic syndrome. Insulin resistance and the
subsequent inflammatory cascade that characterize NAFLD,
NASH, and cirrhosis appear to play an important role in
carcinogenesis in the liver. Thus, the entire constellation of
these metabolic changes culminates in a substantially
increased risk of HCC development. 
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