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Abstract. Background: Local relapse (LR) after breast-
conserving therapy (BCT) is not accurately predicted by
histological/clinical factors. Gene expression profiling was
used here to discover LR-associated
alterations. Materials and Methods: Gene expression
profiling was carried out of 81 early breast carcinomas
obtained from 30 patients who developed a LR (LR") after
BCT and 51 who did not (LR™). LR* and LR~ samples were
matched for known LR risk features. Results: LR was not
associated with a given molecular subtype. Supervised
analysis identified a 212-gene signature, which was not
validated in independent tumors. No gene set or biological
pathway was differentially expressed between LR and LR~
groups. Twelve published prognostic expression signatures
failed to distinguish these groups of carcinomas. The gene
expression profiles of 9 cases of LR and the corresponding
primary tumors were very similar despite the delivery of
radiotherapy. Conclusion: In this series, the onset of LR was
not predicted by gene expression alterations.

transcriptional

Breast cancer is the most frequent and lethal female cancer
worldwide. In developed countries, most cases are diagnosed
at an early stage (stages I and II). For these patients,
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locoregional treatment combines breast-conserving surgery
(lumpectomy) followed by radiation therapy (whole breast
irradiation and boost to the tumor bed). It is clearly
established that the survival benefit of this breast-conserving
therapy (BCT) is similar to that of mastectomy (1, 2).
Nevertheless, local recurrences (LR) are more frequent after
BCT than after mastectomy, with a local relapse rate of
around 1% per year (1, 2). Local relapse leads not only to
extensive surgical treatment (secondary mastectomy), with
its esthetic and psychological consequences, but also
increases the risk of distant metastatic relapse and reduces
survival (3, 4). Thus, efforts to reduce the local relapse rate
are crucial and should lead to a reduction of breast cancer
mortality.

One solution is to better identify patients at high risk of
local relapse so that they can be offered more aggressive
local treatment, such as mastectomy or higher radiation
doses. Common histological/clinical risk factors of local
relapse after BCT include involvement of surgical margins
by carcinoma, young age, multifocal disease, lymphovascular
invasion, and lack of radiation boost (5-11). The use of
adjuvant systemic therapy also reduces the risk (6). But these
predictive features are imperfect. Local relapse cannot be
explained by incomplete surgical resection alone since most
patients with such resection never relapse after BCT, and
conversely, local relapse occurs in patients treated with
complete surgery (no tumor residue and margins greater than
5 mm) and irradiation including a boost to the tumor bed.
Moreover, the impact of age suggests the existence of
additional biological mechanisms that influence the onset of
relapse.

199



CANCER GENOMICS & PROTEOMICS §8: 199-210 (2011)

For many years, the potential of molecular analyses for
identifying features associated with the risk of local relapse
has been suggested (12-17). However, today the results of
such studies remain inconclusive and without clinical
application. During the last decade, gene expression profiling
(for review, see (18)) has been successfully used for
identifying relevant subtypes of breast cancer (19-22), and
determining signatures predictive of metastatic risk (23-28)
or the response to systemic therapy (29-33). More recently,
this approach has been applied to determine expression
profiles predictive of local relapse after BCT (34-37); to date
however, only four studies have been reported by two teams
and the results are rather disappointing. van de Vijver’s team
failed in identifying a predictive signature in its two first
studies (34, 37). In the third study, they reported a 111-gene
signature, which lost its prognostic value in multivariate
analysis (35). A Swedish team separately analyzed estrogen
receptor-positive (ER*) and ER™ samples (36)). They found
an 81-gene predictive signature, that they did not try to
validate, in ER* tumors. Unfortunately, this signature lost its
predictive value when tested by Kreike et al. in their recent
study (35). In all these studies, the two patient groups were
not matched for classical histological/clinical features
predictive of local relapse.

Here, we profiled a unicentric series of 81 early breast
carcinomas treated by BCT using whole-genome DNA
microarrays. In contrast with the aforementioned studies and
to avoid identifying a local relapse predictor associated with
a classical risk factor, we matched the cases with relapse and
those without for the known risk features.

Materials and Methods

Breast cancer patients and samples. All samples were selected from
our institutional breast cancer database from patients with non-
metastatic, non-inflammatory invasive breast adenocarcinoma
treated by BCT at the Paoli-Calmettes Institute (Marseille, France)
between 1988 and 2005. Additional selection criteria included:
available frozen tumor sample, no prior malignancy (notably in the
contralateral breast), no prior or simultaneous metastasis, clinical
tumor size <5 cm, and available histological/clinical data, including
follow-up. A total of 30 patients who developed a local recurrence
(same localization as the primary tumor in the breast) near the initial
tumor bed with similar pathological characteristics were selected
(thereafter designated LR+ group). We then chose 51 patients who
did not develop any local recurrence (LR~ group) as controls: they
were matched with the 30 LR* cases based on traditional
histological/clinical features (age, margin status, pathological
axillary lymph node involvement, tumor size, and Scarff-Bloom-
Richardson (SBR) grade, vascular invasion, ER status, radiation
boost, and systemic treatment). Histological/clinical data for the 81
samples are summarized in Table I. The median age of patients was
55 years. Most tumors (80%) were invasive ductal carcinomas, 17%
had margins microscopically involved by an in sifu or invasive
component, and 27% had pathologically involved axillary lymph
nodes. BCT was defined by a breast-conserving surgery with
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surgical lymph node evaluation (lymph node dissection or sentinel
lymph node procedure) followed by whole breast irradiation of 46 to
50 Gy. A radiation boost to the tumor bed was delivered in 76
patients (median dose of 14 Gy applied by external beam
radiations). Most of the patients received a systemic adjuvant
treatment according to the standard guidelines at the time of
diagnosis: chemotherapy for 46 cases and hormone therapy for 33.
For nine patients who experienced a local relapse, the local relapse
sample was also available for profiling. The study was approved by
our Institutional Review Board, and all patients gave signed
informed consent.

Gene expression profiling. Total RNA was extracted from frozen
samples by using guanidium isothiocyanate and cesium chloride
gradient, as previously described (38). Its integrity was confirmed
by analysis (Bioanalyzer; Agilent, Palo Alto, CA, USA).

Gene expression analyses were done carried out with Affymetrix
U133 Plus 2.0 human DNA chips (www.Affymetrix.com).
Preparation of cRNA, hybridization, washing and detection were as
previously described (39). Scanning was with Affymetrix
GeneArray scanner and quantification with Affymetrix GCOS
software. Data were analyzed by the Robust Multichip Average
method in R using Bioconductor and associated packages (40).
Robust Multichip Average was used for background adjustment,
quantile normalization, and summarization of 11 oligonucleotides
per gene.

Public expression dataset. To test the performance of our gene
expression signature in independent breast cancer samples, we
analyzed publicly available clinical and expression data from two
sets of 165 (35) and 161 (37) patients. Data were collected from
Array Express (series E-NCMF-24) (35) or the author’s website
(http://microarray-pubs.stanford.edu/wound_local_recurrence/
Local_Recurrence_explore.htm). Genes of our signature were
mapped from Human Genome Oligo Set version 3.0 arrays
(containing 34,580 probes and used by Dutch laboratories) to U133
Plus 2.0 using the ‘best match’ provided by Affymetrix
(http://www.netaffx.com). Expression data for the matching U133
Plus 2.0 probe sets were then submitted to hierarchical clustering.

Gene expression data analysis. Unsupervised analyses were carried
out by hierarchical clustering. Data were log,-transformed and
submitted to the Cluster program (41) using data median-centered
on probe sets, uncentered correlation as similarity metrics, and
centroid linkage clustering. Results were displayed using the
TreeView program (41).

Molecular subtypes of breast carcinoma (luminal A, luminal B,
basal, ERBB2-overexpressing, claudin-low) were defined using the
Single Sample Predictor (SSP) (21) as previously described (26),
and the 9-cell line claudin-low predictor (42). For non-claudin-low
cases, the subtype was that defined by the SSP classifier.

We assessed the capacity of 12 published prognostic gene
expression signatures to distinguish LR+ from LR~ patients: the 70-
gene signature (23), the genomic grade index (97 genes) (24), the
76-gene signature (25), the recurrence score (21 genes) (43), the
hypoxia signature (163 genes) (44), the chromosomal instability
signature (70 genes) (45), a proliferation-related signature (112
genes) (46), the wound-response signature (442 genes) (47), the
radioresistance signature (52 genes) (48), the invasiveness gene
signature (186 genes) (49), and two gene expression signatures
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Table 1. Histological and clinical features of the patient series.

Whole population LR* group LR~ group p-Value*
n=81 (%) n=30 (%) n=51 (%)
Age <50 years 25 10 (33) 15 (30) 0.81
pT >20 mm 43 (53) 16 (53) 27 (53) >0.99
pN positive 22 (27) 9 (30) 13 (26) 0.80
SBR grade (1/2/3) 20(25)/33(41)/28(35) 5(17)/14(47)/11(37) 15(29)/19(37) /17(33) 0.45
ER positive 52 (64) 19 (63) 33 (65) 0.94
IDC 65 (80) 23 (77) 42 (82) 0.57
Vascular invasion 26 (32) 12 (40) 14 (28) 0.63
Involved margins 14 (17) 7 (23) 7 (14) 0.36
Radiation boost 76 (94) 27 (90) 49 (96) 0.35
Chemotherapy 43 (53) 13 (43) 30 (59) 0.25
Hormone therapy 33 (41) 12 (40) 21 (41) 0.95
Median time to LR NA 31.8 (6.2-172.5) NA NA
Median follow-up 100 [8.0-190.2] NA 112 (42.9-190.2) NA

pT, pathological tumor size; pN, pathological lymph node status; SBR, Scarff-Bloom-Richardson; ER, estrogen receptor; IDC, invasive ductal

carcinoma; LR, local relapse; NA, non assessable. *Fisher’s exact test.

related to local recurrence (35,36) containing 104 and 81 genes,
respectively. All these signatures have been established to predict
outcome or response to treatment in breast cancer. We matched each
signature with the probe sets represented on our microarrays. We
then classified our samples with the resulting common probe sets
according to the methodology described in each corresponding
study or by hierarchical clustering when this was not mentioned.

Finally, we applied supervised analyzes to identify genes and
pathways associated with the occurrence of local relapse in our
series. To identify and rank genes discriminating the two subgroups
of samples (with local relapse vs. without), analysis was applied to
the probe sets with expression values greater than the background
using the signal-to-noise ratio (SNR). The SNR was calculated for
each gene (50) as SNR=(M1-M2)/(S1+S2), where M1 and S1,
respectively, represent the mean and SD of expression levels of the
gene in group 1, and M2 and S2 in group 2. Confidence levels were
estimated by 100 random permutations of samples as previously
described (51). A ‘leave-one-out cross-validation’ (LOOCYV)
procedure (50) was applied to estimate the predictive accuracy of
the signature and the validity of our supervised analysis. To help in
the interpretation, the lists of discriminator genes were interrogated
using the Ingenuity Pathway Analysis software (version 5.5.1-1002;
Ingenuity Systems, Redwood City, CA, USA). We also examined
differential expression of pre-defined gene sets using Gene Set
Enrichment Analysis (GSEA) (52, 53). GSEA determines whether
members of a set of genes that correspond to a given biological
pathway tend to occur towards the top or the bottom of a rank-
ordered gene list, ordered here by differential expression between
LR+ and LR~ tumors. To test a broad range of biological processes,
we tested the C2 Gene Set Collection version 2 (MSigDB,
http://www.broadinstitute.org) containing 1,892 genes. GSEA was
computed with 1,000 permutations and SNR as metrics for ranking
genes. The same procedure was applied to the 165 tumors from a
recently published study (35).

Statistical analysis. Correlations between sample groups and
histological/clinical variables were calculated with the Fisher’s exact
test or Chi-square test when appropriate. Follow-up was measured

from the date of diagnosis to the date of last contact with live
patients. Time to local recurrence was calculated from the date of
diagnosis until the date of first local relapse. Survival was defined
using the Kaplan-Meier method and compared between groups with
the log-rank test. All statistical tests were two-sided at the 5% level
of significance. All statistical analyzes were performed using R
software version 2.8.1. This article is written in accordance with
reporting recommendations for tumor marker prognostic studies
(REMARK) criteria (54).

Results

Patient characteristics. We profiled a series of 81 primary
tumors  using  whole-genome  DNA  microarrays.
Histological/clinical data are shown in Table I. Thirty tumors
were from patients who developed a local relapse as first event
(LR* group), and 51 were from patients who did not develop
any local relapse (LR~ group). To avoid detecting expression
differences related to differences in histological/clinical
features, we matched the two groups of patients with respect
to pathological and clinical criteria usually associated with the
occurrence of local relapse. As shown in Table I, the two
groups were balanced regarding age, tumor size, lymph node
involvement, immunohistochemical (IHC) ER status,
pathological grade, pathological subtype, margin status,
vascular invasion, radiation boost, and adjuvant systemic
therapy. The median time to local relapse for the 30 LR* cases
was 32 months after diagnosis, whereas the median follow-up
for 51 control cases was 112 months.

Whole-genome expression profiling of breast cancer and local
relapse. Whole-genome unsupervised hierarchical clustering
of 81 samples identified two main clusters of tumors, I and
II (Figure 1), which as expected, were strongly associated
with the intrinsic features of breast cancer, ER status and
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Figure 1. Gene expression profiling of primary tumors. A: Hierarchical clustering of 81 samples and 12,957 probe sets with significant variation in
RNA expression level across all samples. Each row represents a gene and each column a sample. The expression level of each gene in a single
sample is relative to its median abundance across all samples and is depicted according to a color scale (bottom), where red and green represent
expression levels above and below the median, respectively. Colored bars to the right show 6 gene clusters of interest that are shown magnified in

B. B: Dendrogram of samples and gene clusters. Top: dendrogram: two large groups of tumors (I and I, delimited by the red vertical line) are
evidenced by clustering. Middle, some relevant features of samples are represented according to a color ladder. Margins: white, free; black, involved.
Age: white, 250 years; black, <50 years. Pathological tumor size (pT): white, <20 mm; black, >20 mm. Pathological lymph node involvement (pN):
white, negative; black, positive. Pathological grade according to the Scarff Bloom and Richardson grading system: white, I; grey, II; black, IIl. IHC
ER status: white, positive; black, negative. Delivery of adjuvant chemotherapy (CT) and hormone therapy (HT): white, no; black, yes. Molecular
subtypes: dark blue, luminal A; light blue, luminal B; red, basal-like; pink, ERBB2-overexpressing, yellow, claudin-low. Local relapse (LR): white,
no, black, yes. Bottom: Expanded view of selected gene clusters from A: immune response (light blue bar), basal (red bar), proliferation (brown bar),
luminal/ER (dark blue bar), 17q (purple bar), and extracellular matrix (orange bar).

grade. Ninety-six percent of cluster I samples were ER-
positive, vs. only 20% of cluster II tumors (p:7.89E_03,
Fisher’s exact test), and 36% were grade 1 vs. 9% in cluster II
(p:7.23E‘13, Fisher’s exact test). By contrast, no significant
correlation existed with patients’ age, margin status, pN, and
pT, and with the incidence of local relapse, which concerned
34 and 41% of patients in clusters I and II, respectively
(p=0.64, Fisher’s exact test). Clusters were associated with
the molecular subtypes, with 90% of luminal samples being
in cluster I and 100% of basal, claudin-low and ERBB2-
overexpressing tumors being in cluster II. Coherent gene
clusters, related to specific cell types, biological pathways or
chromosomal locations, were associated with the molecular
subtypes. Some of them are highlighted in Figure 1B.
Luminal samples displayed a low expression of the immune
and basal gene clusters, and a strong expression of the
luminal/ER gene cluster. Luminal B tumors displayed a
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Figure 2. Local relapse-free survival for patients with 165 independent
tumors from (20). Kaplan-Meier curves of local relapse-free survival of
the two groups defined by our 212-gene signature. The blue curve
represents the cases classified as being at high risk of local relapse and
the red curve those classified as being at low risk.
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Figure 3. Gene expression profiling of local relapses and corresponding primary tumors. Hierarchical clustering of 18 samples and 9,603 probe sets
with significant variation in RNA expression level across all samples. The legend is similar to that for Figure 1A. Under the dendrogram of samples,
the name of the samples is indicated as follows: BC, breast cancer; LR, local relapse; number of patients (from I to 9, for the 9 pairs). The molecular

subtype of samples is shown.

stronger expression of the proliferation gene cluster than
luminal A tumors. Basal and claudin-low tumors
overexpressed immune, proliferation, and basal genes.

We then searched for a correlation between the molecular
subtypes and the occurrence of local relapse. In the LR*
group, we identified 14 (47%) luminal A tumors, 5 (17%)
luminal B, 3 (10%) basal, 4 (13%) claudin-low, and 4 (13%)
ERBB2-overexpressing. In the control LR™ group, 27 tumors
were luminal A (52%), 9 (18%) luminal B, 9 (18%) basal, 2
(4%) claudin-low tumors, and 4 (8%) ERBB2-overexpressing.
As expected given the previous matching of the two groups

regarding the histological/clinical features, the correlation
between the molecular subtypes and the occurrence of local
relapse was not significant (p=0.46, Fisher’s exact test).
Finally, we assessed the capacity of 10 gene expression
signatures — previously published as being associated with
survival or therapeutic response in breast cancer — to
differentiate the LR* cases from the LR~ cases. Our samples
were classified according to each expression signature into two
classes: high risk and low risk. As shown in Table II, no
classifier was associated with the occurrence of local relapse
in our series. We also tested the two signatures recently
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Table II. Predictive value of 12 published gene expression signatures for local relapse in early breast cancer.

Classifier Group LR* LR~ No.common Sensitivity Specificity = p-Value, OR
(n) (n) genes/ Fisher’s
No. genes in exact test
the classifier

70-Gene signature [23] Good 10 21 29/70 04 0.68 0.64 0.72
Poor 20 30

Genomic Grade Index [24] High 15 28 96/97 0.5 0.45 0.82 0.82
Low 15 23

76-Gene signature [25] Good 5 24 76/76 0.5 0.49 1 1.04
Poor 5 25

Recurrence score [43] High 11 17 14/21 NA NA 0.91%** NA
Intermediate 7 11
Low 12 23

Hypoxia signature* [44] High 14 21 155/168 0.47 041 0.65 1.25
Low 16 30

Chromosomal instability* [45] High 15 25 64/70 0.5 0.51 1 1.04
Low 15 26

Proliferation signature* [46] High 17 28 71/112 0.57 0.45 1 1.07
Low 13 23

Wound response signature [47] Activated 17 33 281/459 0.57 0.35 0.49 0.72
Quiescent 13 18

Radioresistance signature [48] High 14 28 52/52 0.47 0.45 0.5 0.72
Low 16 23

Invasiveness gene signature [49] IGS 9 24 186/186 0.3 0.53 0.16 0.49
non-IGS 21 27

Local relapse signature*, Kreike [35] High 12 24 60/104 04 0.53 0.65 0.75
Low 18 27

Local relapse signature*, Nimeus-Malstrom [36] High 15 33 77/81 0.5 0.35 0.24 0.55
Low 15 18

Local relapse signature on ER positive High 11 18 77/81 0.58 0.45 1 1.14
samples only*, Nimeus-Malstrom [36] Low 8 15

*Classification established by hierarchical classification; **Chi-square test; n, number of samples; LR, local relapse; OR, odds ratio; NA, non

assessable; ER, estrogen receptor.

reported as being predictive of local relapse (35, 36): in our
dataset: their predictive value was not confirmed (see Table II).

Supervised analyses for prediction of local relapse. Both
global unsupervised approach and the previously reported
molecular subtypes and other prognostic signatures were
unable to predict the risk of local relapse. Thus, we applied
supervised analysis to search for genes or biological
pathways discriminating LR* and LR~ samples.

Firstly, at the gene level using SNR combined with 100
permutation tests and a significance threshold producing
fewer than 0.2% of false positives, we found 212 out of the
28,325 tested probe sets as being differentially expressed
between the two groups (Supplementary Table I): 134 were
up-regulated and 78 were down-regulated in LR* samples.
These 212 probe sets represented 172 characterized genes
(166 different genes) and 40 ESTs (expressed sequence tags).
Using LOOCYV as internal validation method, we recorded a
relatively low predictive accuracy (58%), suggesting low
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association with our endpoint. As external validation, this
212-gene signature was tested on 165 and 161 tumors from
two independent data sets (35, 37). In both sets, the
hierarchical clustering-based classification (data not shown)
did not correlate with the occurrence of local relapse, with
p-values of 0.21 and 0.29 (Fisher’s exact test), respectively.
A similar negative result was found when taking into account
the time to local relapse, available in one study (37), without
any detected significant difference between the Kaplan-Meier
LR-free survival curves of high-risk vs. low-risk patients
(»=0.219, log-rank test, Figure 2). These observations
suggest that our 212-gene signature established on our
whole-population was not robust. Analysis of gene
ontologies using Ingenuity revealed only one significant
canonical pathway that included more than 5 genes and was
specifically associated with the up-regulated genes of the
signature. No similar pathway was significantly associated
with the down-regulated genes (Supplementary Table II). To
attempt to identify a robust signature, we performed the same
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analysis using more stringent selection criteria for samples.
We compared the profiles of 17 patients with early relapse,
i.e. women presenting a local relapse during the first three
years after BCT, with those of 41 patients without local
relapse after a long follow-up of at least 8 years. We
identified 74 probe sets (Supplementary Table III; theoretical
number of false positives=55) differentially expressed
between the two groups, with a predictive accuracy of 70%
in LOOCV. However, this new signature was not validated
in the two previous independent data sets, with p-values for
local relapse prediction of 0.93 (37) and 0.18 (35) (Fisher’s
exact test), respectively.

Secondly, because individual gene set analysis suggested
relatively low expression differences between LR* and LR~
tumors, we used GSEA to search for discriminating biological
pathways. The idea was to detect coordinated, but relatively
small scale (not detectable at the level of gene analysis)
differences in expression of genes representing biological
functions. Whatever the population analyzed (all 81 samples
or the 58 tumors from the more stringent subset), we failed to
discover biological pathways significantly associated with
local relapse. Among the 1,892 tested pathways, 230 gene sets
were found as being up-regulated in the LR™ group and 1,409
in the LR™ group, but none reached the significant false
discovery rate (FDR) of 25% (data not shown).

Comparative expression analysis of primary tumors and
local relapses. For 9 out of the 30 LR* tumors, we were able
to define the gene expression profiles of the corresponding
local relapse. Unsupervised analysis of these 9 pairs (18
samples) and the most variant probe sets is shown in Figure
3. Interestingly, 8 of the 9 local relapse samples closely
clustered with their corresponding primary tumor. Moreover,
the molecular subtypes of most of the primary tumors were
conserved in the corresponding local relapse (Figure 3).
Finally, supervised analysis between primary tumors and
local relapses identified only 74 probe sets as being
differentially expressed, with a high expected false-positive
number of 56 (Supplementary Table IV).

Discussion

Identification of tools to better tailor treatment for individual
breast cancer patients is a major focus of research. Here, we
have searched for a gene expression signature associated
with local recurrence after BCT of early breast cancer. Using
whole-genome DNA chips, we analyzed 81 primary invasive
breast adenocarcinomas and 9 primary tumor-matched local
recurrences. To our knowledge, this study is the fifth high-
throughput molecular study addressing this issue in literature
after those reported by two other teams (34-37). But it differs
from these laters in the way that we matched the two groups
of samples (with and without local recurrence) regarding the

features classically associated with local relapse. Indeed, the
absence of matching in the previous studies might be a
reason for their relative failure to define robust signatures
independent from classical histological/clinical variables.
However, despite this methodological difference and the use
of different technological platforms, our results are relatively
similar to those previously reported.

Whole-genome unsupervised analysis was not able to
separate LR and LR~ tumors. This observation, also
reported by others (34, 35), suggests that the transcriptional
differences, if any, between the two groups are not important
in terms of the number of altered genes, and are not
associated with classical biological features, such as ER
signaling, proliferation, or immune response, which usually
govern the whole-genome clustering of breast cancer
samples. In our series, local relapse was not dependent on
the molecular subtypes. In fact, these two observations were
rather expected given the initial matching of LR* and LR~
groups based on features classically associated with the
subtypes. By contrast, in a larger and non-matched series
(35), tumors from LR* patients were significantly more often
luminal B or ERBB2-overexpressing types. But the results
remain conflicting. In a series of 753 breast carcinomas (55),
patients with ERBB2-overexpressing and triple-negative (i.e.
ER, PR and ERBB2 negative) tumors did not present
significantly more local relapses than those with luminal
tumors (ER and/or PR positive). The 5-year local relapse-
free survival was 2.3%, 4.6% and 3.2% for luminal, ERBB2
and TN breast cancer, respectively (p=0.36). In the same
way, 117 triple-negative early breast carcinomas were
compared to 365 non-triple-negative tumors (56), all being
treated by BCT including radiation therapy with a boost on
the tumor bed. No difference was observed in local relapse
incidence with a 5-year local relapse-free survival of 83% in
both groups. Of note, these studies did not include the
recently described claudin-low subtype. Analysis of larger
series including all molecular subtypes is warranted to
address this issue.

We also showed that none of the 10 tested gene expression
signatures with proven value in predicting survival in breast
cancer or response to radiation therapy were able to
distinguish LR* and LR~ tumors in our series. Relatively
similar results have been reported by others. IN assessment
of three signatures (70-gene signature (23), hypoxia
signature (44), and wound response signature (47)), it was
found that only the wound-response signature significantly
succeeded. However, this finding was not confirmed in a
recent and larger study (35), in which all 8 tested signatures,
except the 70-gene signature and the chromosomal instability
signature, failed in identifying LR* and LR~ samples. In a
Swedish study (36), the wound-response signature did not
predict the local relapse in the combined ER*/ER™ group,
nor in the ER™ group, but performed well in the ER* group.
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Of note, all the signatures assessed in these studies were
among those tested in our series. We also showed that the
two signatures recently reported as being predictive of local
relapse (35, 36) were not predictive in our dataset. Similarly,
Kreike et al. were also unable to validate the Nimeus-
Malmstrom signature in their larger series (35). The reduced
number of genes from each tested signature common with
our platform might explain the loss of predictive
performance. However, these results raise questions about
the validity of these two signatures established from
relatively small and non-matched series (98 tumors for
Kreike’s signature and 100 for the Swedish signature),
without an independent validation set for one of them (36)
and without independent prognostic value for the other one.
We also applied classical supervised analyses to search for
gene signatures or biological processes associated with local
relapse in our series. Using the GSEA software, we showed
that, after correction for multiple testing, none of the 1,892
tested biological processes-based gene sets was significantly
associated with the onset of relapse. This result was observed
in our series whatever the population analyzed (all 81
samples or the 58 tumors from the more stringent subset),
but also when we analyzed a larger public dataset containing
165 samples (35). A similar negative result was reported by
others using GSEA applied to 504 predefined gene sets and
a series of 161 tumors (37). At the gene level, our supervised
analysis found 212 probe sets the expression of which was
associated with local relapse in the whole population, and 74
in the restricted population. However, because of the high
rate of associated false positives, the poor performance of the
two gene lists in LOOCYV, and more importantly, the failure
of their validation in two public independent cohorts, their
robustness remains questionable. No biological pathway was
strongly represented within these signatures. However, some
genes seem biologically relevant in the context of local
relapse. For example, the top gene overexpressed in LR*
samples in the two lists is PIP5KIA, which encodes
phosphatidylinositol-4-phosphate 5-kinase, type I, alpha.
This protein is involved in metabolism, especially the
metabolism of phosphatidylinositol. It may also contribute to
the inhibition of apoptosis by activating phosphatidylinositol-
4.5-bisphosphate (PIP2), a potent inhibitor of caspases 3, 8
and 9. Its potential involvement in resistance to radiotherapy
was previously suggested in glioblastoma cell lines (57).
Failure at identifying a robust local relapse signature has
already been reported by van de Vijver’s group (34, 37) in
initial series of 50 and 161 tumors. More recently in a larger
series, this group reported a signature that they validated in
an independent dataset, but which lost its predictive value in
multivariate analysis which included histological/clinical
variables. The signature was enriched for genes involved in
cell proliferation, likely due to the imbalance for the
pathological grade between LR* and LR~ samples. The other
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published local relapse signature was identified in 100 ER*
tumors, but without any validation set (36), and was not
confirmed as being predictive in the large Kreike series or in
ours. It was enriched for ribosomal genes, likely for the same
reason as Kreike’s signature.

Altogether, these inconclusive results highlight the
difficulties of gene expression profiling in relevantly linking
genes or gene sets to local relapse onset. Several reasons
may be proposed. Perhaps the most important concerns the
preponderant influence of treatment-associated factors, such
as the status of surgical margins or the lack of radiation
boost, on local relapse when compared to intrinsic tumor
parameters. Recent studies have indeed suggested that ER,
PR, and ERBB2 THC expression did not influence local
relapse after BCT (55, 56). It is also possible that relevant
molecular alterations are not present at the RNA level in the
tumor, but at other post-transcriptional levels. Host factors
may also contribute to the local relapse risk as recently
reported for nmetastases (58). Other reasons are
methodological: 1) all reported series, including the present
one, are relatively small, for both the learning and validation
sets, with rather low number of events; ii) series are
heterogeneous, notably with regard to risk factors associated
with local relapse and to the delivery of adjuvant systemic
therapies that influence the risk; iii) they do not separate
tumors with regard to the molecular subtypes, which
represent distinct diseases with, for example, different gene
expression signatures predictive of the metastatic risk.

Finally, we studied 9 sample pairs including the primary
tumor and its corresponding local relapse. In agreement with
the previous results (34, 35), unsupervised and supervised
analyses clearly suggested very few transcriptional
differences between primary tumors and local relapses.
Whole-genome clustering showed that the relapse samples
were closer to their corresponding primary tumor than to
other samples (relapses and primary tumors). Supervised
analysis comparing primary tumors and local relapses
resulted in high FDR, suggesting no significant difference
between them. We have also shown that molecular subtypes
are conserved from the primary tumor to the local relapse.
All these observations suggest that gene expression profiles
are not deeply modified by local radiation therapy (46 Gy
minimum), and for some of them by associated systemic
treatments (chemotherapy and/or hormone therapy). They
also confirm that our analyzed samples of local relapse are
true local relapses and not a second primary tumor in the
same breast. Similar results have been reported at the DNA
level with analysis of singe-nucleotide polymorphisms (59).

In conclusion, our study —the first one matched on
histological/clinical risk factors— suggests that gene
expression profiling may not give relevant information to
predict local relapse occurrence after BCT. No specific
transcriptional pathway involved in local relapse was
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identified. Based on our results and those of the four other
studies published in the field, it seems that RNA expression
profiles do not contain any robust signature predictive of the
onset of local relapse after BCT. However, these conclusions
may be accounted for by several reasons discussed above,
including the small size and heterogeneity of series, perhaps
not statistically powered enough to detect small, if any,
predictive signature. We think that the analysis according to
molecular subtype of larger series is warranted to definitively
address this issue at the RNA level.
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