
\Abstract. Inference of phylogenetic trees comprising
hundreds of organisms based on elaborate statistical models of
evolution is an intensive computational task. However, in
recent years there has been an impressive improvement in
search algorithms, which currently allow for inference of huge
phylogenetic trees comprising more than 1,000 taxa within a
couple of hours on a single PC. This paper provides an
overview of applications of phylogenetic trees to various areas
of biological and medical research and reviews some of the
most efficient software available for phylogenetic inference.
Finally, some of the new challenges that the field currently
faces in the areas of high performance computing and
information visualization are discussed.

Phylogenetic trees are used to represent the evolutionary

history of a set of n organisms which are often also called

taxa within this context. A multiple alignment of a suitable,

in a biological context, small region of their DNA or protein

sequences can be used as input for the computation of

phylogenetic trees.

In a computational context, phylogenetic trees are usually

strictly bifurcating (binary) unrooted trees. The organisms of

the alignment are located at the tips (leaves) of such a tree,

whereas the inner nodes represent extinct common ancestors.

The branches of the tree represent the time which was

required for the mutation of one species into another, new,

one. The most fundamental algorithmic problem

computational phylogeny faces consists of the immense

amount of potential alternative tree topologies. This number

grows exponentially with the number of sequences n, e.g., for

n=50 organisms there already exist 2.84*1076 alternative

topologies; a number almost as large as the number of atoms

in the universe (≈1080). Thus, given some, biologically

meaningful, optimality criterion for evaluating all alternative

configurations (topologies) in order to search for the best

tree, one can quickly assume that the problem might be NP-

hard. NP-hard problems in computer science are hard-to-

solve optimization tasks. Typically, there is a great number of

different configurations – tree topologies in the specific case

– which have to be evaluated using some function f(), e.g., the

likelihood function, in order to find the configuration which

minimizes or maximizes f(). Due to the sheer size of the

search space for NP-hard problems, it is usually not possible

to compute the optimal solution. Therefore, appropriate

intelligent heuristics have to be deployed which only explore

a small fraction of this gigantesque search space and typically

only yield suboptimal solutions. For some heuristics and

problems a guaranteed worst-case performance exists, i.e. a
formula that states that the solution found by the algorithm

will be, for example, at most 10% from optimal. In

phylogenetics, however, no such guarantee exists, especially

for very large trees computed with Maximum Likelihood

(ML). The NP-hardness of ML has recently been

demonstrated (9). Another important aspect for the design

of heuristic tree searches consists of the very high degree of

accuracy (difference to the score of the optimal or best-

known solution) which is required to obtain reasonable

biological and topologically closely-related results. While an

accuracy of 90% is considered to be a "good" value for

heuristics designed to solve "classic" NP-hard optimization

problems, such as the traveling salesman problem, recent

results suggest that phylogenetic analyses require an accuracy

≥99.99%, in particular for large trees (44). This observation

yields the whole field more difficult and challenging.

Regarding the various evolutionary models which have been

proposed for phylogenetic inference, a trade-off exists

between speed and quality. This means that a phylogenetic

analysis conducted with an elaborate model such as ML

requires significantly more time but yields trees with superior

accuracy than, for example, Neighbor Joining (NJ) or

Maximum Parsimony (MP). However, due to the higher
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accuracy, it is desirable to infer large and complex trees with

ML. Within this context, it is important to emphasize that the

design of ML programs used to be mainly an algorithmic
discipline. Therefore, progress in the field has been attained

through algorithmic innovations rather than by brute force

allocation of all available computational resources, e.g. large

supercomputers or even grids of supercomputers. However,

because of the major algorithmic advances over the last

couple of years, technical implementation aspects and High

Performance Computing (HPC) implementations are

becoming increasingly important. Many state-of-the-art

sequential search algorithms, which in principle are able to

reconstruct very large trees of 5,000 taxa and more, face

considerable technical problems with respect to memory and

resource shortages.

Applications

The inference of phylogenies with computational methods

has many important applications in medical and biological

research, such as drug discovery and conservation biology. A

result published by Korber et al. (19), that times the

evolution of the HIV-1 virus, demonstrates that ML

techniques can be effective in solving biological problems.

Phylogenetic trees have already witnessed applications in

numerous practical domains, such as in conservation biology

(3) (illegal whale hunting), epidemiology (5) (predictive

evolution), forensics (27) (dental practice HIV transmission),

gene function prediction (7) and drug development (14).

Other applications of phylogenies include multiple sequence

alignment (11, 25), protein structure prediction (31), gene

and protein function prediction (12, 22) and drug design

(30). A paper by Bader et al. (2) addresses important

industrial applications of phylogenetic trees, e.g. in the area

of commercial drug discovery. Due to the rapid growth of

available sequence data over recent years and the constant

improvement of multiple alignment methods, it has now

become feasible to compute very large trees which comprise

more than 1,000 organisms. The computation of the tree-of-

life containing representatives of all living beings on earth is

considered to be one of the grand challenges in

Bioinformatics. Some large multi-institutional/multi-

disciplinary projects are underway which aim at building the

tree of life: CIPRES (Cyber Infrastructure for Phylogenetic

Research www.phylo.org) and ATOL (Assembling the Tree

of Life project, tolweb.org).

Software for Phylogenetic Analysis

The review of current software for phylogenetic analysis is

restrained to statistical phylogeny methods, since the

general consensus is that they represent the most accurate

methods currently available.

Performance studies. A thorough comparison of popular

phylogeny programs using statistical approaches such as

fastDNAml (26), MrBayes (15), PAUP* (paup.csit.fsu.edu)

and TREE-PUZZLE (41) on small simulated datasets (up

to 60 sequences) has been conducted by Williams et al. (43).

The most important result of this paper is that MrBayes

outperforms all other phylogeny programs in terms of speed

and tree quality. However, the results of this survey do not

necessarily apply to large real datasets, since simulated

alignment data has different properties and a significantly

stronger phylogenetic signal than real world data [see (37)

for a discussion]. Therefore, much more computational

effort is required to find a "good" phylogenetic tree for real-

world data. Due to the significant differences between real

and simulated datasets, comparative surveys should include

collections of simulated and real datasets in order to yield a

more complete image of program performance. In fact,

some real datasets exist for which MrBayes fails to yield

acceptable trees within reasonable time (36). Huelsenbeck

et al. (16) provide an in-depth discussion of the potential

pitfalls of Bayesian inference.

Sequential algorithms. In 2003, Guidon et al. published an

interesting paper about their very fast new program

PHYML (13). The performance of PHYML has been tested

on medium-sized simulated datasets of 100 sequences and

two well-studied real datasets containing 218 and 500

sequences. The main advantage of PHYML consists of its

speed and in a very comprehensive implementation of

nucleotide and amino acid substitution models. On real-

world data, however, the current search algorithms

implemented in RAxML clearly outperform PHYML, both

in terms of execution time and final tree quality (34, 37).

The requirement to improve accuracy on real data has been

recognized by the authors of PHYML. In fact, they have

recently integrated a very promising improvement of the

lazy subtree rearrangement technique from RAxML (34) into

PHYML (personal communication). Another main

advantage of RAxML over most other programs consists of

an extremely efficient technical implementation of the

likelihood function, which consumes ≥90% of the total

execution time in most ML implementations. A further

advantage, which is becoming more important at present, is

the significantly lower memory consumption of RAxML.

Irrespective of these differences between RAxML and

PHYML, the results in (13) show that well-established

sequential programs like PAUP*, TREE-PUZZLE (41) and

fastDNAml (26) are prohibitively slow on datasets

containing more than 200 sequences, at least in sequential

execution mode. More recently, Vinh et al. (42) published a

program called IQPNNI – an improved version of TREE-

PUZZLE – which yields better trees than PHYML on real-

world data, but is significantly slower (37). Finally,
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MetaPIGA (21), though also slower than RAxML and

PHYML due to a different search technique (genetic

algorithm), represents a very user-friendly program. A

significantly more efficient version will soon be released

(personal communication).

A slightly different class of search algorithms are the so-

called divide- and- conquer approaches, that intelligently

split the problem into smaller subproblems which can be

solved more efficiently. Rec-I-DCM3 (29) is a recently

introduced meta-method for divide-and-conquer tree

searches. It has to be used in conjunction with a base

method for ML (e.g. RAxML) which is applied to compute

subtrees and further optimizes the comprehensive tree.

Initial results indicate that it is able to significantly improve

upon the quality of final trees compared to stand-alone

RAxML on large alignments (10).

In the final analysis, it can be stated that PHYML,

RAxML, IQPNNI and MetaPIGA are currently among the

fastest freely available software packages for phylogenetic

inference. MrBayes is also a very fine tool, but should be

used in conjunction with one of the above programs to

avoid the aforementioned potential pitfalls.

Parallel phylogeny programs. Most parallel implementations

of ML programs are technically very solid in terms of

performance and parallelization techniques. However, they

drag behind algorithmic development, i.e. relatively old and

slow search algorithms are parallelized. For example, the

largest tree computed with parallel fastDNAml (39) (2001),

which is based on the fastDNAml algorithm from 1994,

contained 150 taxa. The same argument holds for a

technically very interesting JAVA-based distributed

implementation of fastDNAml: DPRml (18). In addition to

using the same old search algorithm, significant

performance penalties are caused by using JAVA both in

terms of memory efficiency and speed of numerical

calculations. Those technical limitations will become more

intense when trees comprising over 417 taxa (currently

largest tree with DPRml, personal communication) are

computed. The authors of DPRml are working on the

aforementioned issues (personal communication). The

largest phylogenetic analysis conducted with the parallel

version of TREE-PUZZLE contained 257 taxa due to

limitations caused by the data structures (personal

communication). IQPNNI has also recently been

parallelized and exhibits very good parallel efficiency (23).

Brauer et al. (4) are currently working on an improved

parallel version of GAML which can compute trees of up to

3,000 organisms. Once again, the main limitation for the

computation of larger trees is memory consumption

(personal communication). Nonetheless, the new tree

search algorithm of GAML appears to be at least as

powerful as the RAxML algorithms, but requires higher

inference times (personal communication). As already

mentioned, a parallel version of Rec-I-DCM3 for maximum

likelihood also exists which is based on RAxML (10). The

current implementation faces some scalability limitations

due to load imbalance, which in turn leads to a relatively

"bad" parallel efficiency, caused by significant differences in

the subproblem sizes. Finally, the previous parallel and

distributed implementations of the RAxML algorithm exist

(33, 35). Parallel RAxML has been used to compute the – to

the best of the author’s knowledge – largest ML-based

phylogeny to date, containing 10,000 organisms on a

medium-sized PC cluster using a total of approximately

3,200 accumulated CPU hours (35).

All parallel implementations that incorporate recent

algorithmic advances like RAxML, Rec-I-DCM3(RAxML),

IQPNNI and GAML represent a good choice for inference

of huge phylogenetic trees, though the latter two can

potentially encounter memory shortages.

Challenges

Memory efficiency. A very important challenge for the design

and implementation of phylogeny programs is reduction of

the memory consumption and improvement of the cache

efficiency for two main reasons: firstly, the computation of

very large trees has become feasible with the new

generation of search algorithms and, due to the immense

accumulation of data, alignments are also constantly

growing in both dimensions: alignment length and number

of taxa. As outlined in the previous section, the applicability

to larger problems of most current programs is limited by

memory consumption. Secondly, for several years now the

speed of Central Processing Units (CPUs) has been growing

at a higher rate than the memory access speed, such that the

performance of a large class of scientific applications is

nowadays limited by their memory access pattern rather

than by the CPU speed. Currently, it is unlikely that this

trend will be reversed. Some strategies to overcome this

burden consist of optimizing programs to reduce memory

consumption on a technical level, deployment of divide-and-

conquer strategies to reduce the size of the problem and

exploitation of powerful shared-memory processors (32).

Finally, recent approaches also exploit the immense

computational potential of peripheral hardware such as

Graphics Processing Units (GPUs) (8).

Implementation and optimization of the likelihood function.
Another important area of research focuses on the

optimization of the likelihood function, which typically

consumes over 90% of total execution time in programs

such as RAxML or PHYML (32). Some approaches (20, 38)

focus on detecting equal patterns in the alignments and re-

using previously calculated values instead of re-computing
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them each time. In addition, using a separate

implementation of the compute-intensive functions for each

individual model of nucleotide substitution, as well as

applying low-level technical optimizations (e.g. manual loop

unrolling) to the likelihood functions, will become essential

for computation of very large trees.

Information visualization. Despite the algorithmic advances in

the field, only a few adequate visualization tools are available

for the analysis of very large trees. Thus, the design of novel

tree-viewing tools is crucial in order to accelerate the analysis

process, as well as to extract useful information from the data

and expedite the cognitive process. Among the most popular

representations are phylogram, radial and slanted cladogram

drawings (24). Such representations are provided by common

tree-viewing programs such as ATV (45). However, these

layouts and programs are targeted at medium-sized trees

comprising a maximum of 300-400 taxa. Thus, they are not

well-suited to visualize large trees with thousands of taxa.

Approaches for larger trees make use of two-dimensional and

three-dimensional (17) hyperbolic space in order to

simultaneously provide a detailed, as well as contextual, view

of the tree. Other approaches such as SpaceTree (28) only

display representative parts of very large trees. However,

biologists usually prefer a simultaneous detailed display and

contextual view of phylogenies. The use of treemaps to

display phylogenetic trees has recently been proposed (1), but

this concept is also limited to a maximum of 2,000-3,000 taxa.

There are also approaches based on virtual reality (40) which

are, however, not accessible to most researchers due to the

sheer cost of the respective infrastructure. Carrizo (6)

provides a readable and comprehensive review of efforts to

appropriately display phylogenetic trees from an information

visualization perspective. Nonetheless, since no really

satisfying solution currently exists, the design of appropriate

visualization tools is becoming an issue of increasing

importance, since otherwise the information contained in

large phylogenies will be useless.

Other issues. Other current issues concern, for example, the

development of more complex and realistic statistical

models of sequence evolution, the assessment of final tree

quality as well as accuracy, new methods to infer

phylogenetic networks and phylogenetic inference based on

gene-order data. Moreover, the simultaneous computation

of multiple alignments and phylogenetic trees is also

receiving more attention.

Outlook

As outlined in this paper, there are already a large number

of applications of phylogenetic trees to real-world biological

and medical problems. Moreover, numerous efficient

programs are freely available – mostly as open source code –

for sequential and parallel phylogenetic inference, which

incorporate a plethora of advanced search techniques.

Nonetheless, high performance computing techniques will

have to be increasingly deployed in order to cope with the

pace of algorithmic development and data accumulation.

Another serious problem is the absence of appropriate

visualization tools for very large trees, which has a negative

impact on the interpretability of the results. However,

promising new algorithmic developments, which significantly

reduce the amount of required evaluations of the likelihood

function, coupled with an increasing awareness about the

aforementioned high performance computing issues in the

community, are likely to allow for parallel inference of trees

containing 10,000-20,000 sequences on medium-sized PC

clusters in the near future. 
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