
Abstract. With the development of high-throughput
biological techniques, high-dimensional omics data have
emerged. These molecular data provide a solid foundation for
precision medicine and prognostic prediction of cancer.
Bayesian methods contribute to constructing prognostic
models with complex relationships in omics and improving
performance by introducing different prior distribution, which
is suitable for modelling the high-dimensional data involved.
Using different omics, several Bayesian hierarchical
approaches have been proposed for variable selection and
model construction. In particular, the Bayesian methods of
multi-omics integration have also been consistently proposed
in recent years. Compared with single-omics, multi-omics
integration modelling will contribute to improving predictive
performance, gaining insights into the underlying mechanisms
of tumour occurrence and development, and the discovery of
more reliable biomarkers. In this work, we present a review
of current proposed Bayesian approaches in prognostic
prediction modelling in cancer.

There were more than nine million deaths caused by cancer in
2018, which made it the second leading cause of death
worldwide (1). Besides traditional radiotherapy, surgery and
chemotherapy, targeted therapy and immunotherapy have also
been developed recently, such as targeted epidermal growth

factor receptor therapies, targeted vascular endothelial growth
factor therapies, inhibitor of programmed cell death protein-1
and its ligand, and cytotoxic T-lymphocyte-associated protein 4
inhibitor (2). However, since cancer is a highly heterogeneous
disease, these emerging therapies might not be sufficiently
effective in all patients. Therefore, it is still necessary to further
investigate the biological mechanism of cancer development
and explore possible potential biomarkers related to tumour
prognosis, diagnosis, etc. 

With the development of high-throughput sequencing
technology, high-dimensional data based on different omics
data is constantly being generated, which provided researchers
with data at the molecular level to reveal relevant biomarkers
of cancer development or prognosis. At present, there are
already some public cancer databases based on molecular data,
such as The Cancer Genome Atlas (TCGA), Gene Expression
Omnibus, International Cancer Genome Consortium, and the
Catalogue of Somatic Mutations in Cancer. Among them,
TCGA, known as a comprehensive database, has collected
multiple omics data, including those regarding the
transcriptome, methylome, somatic mutation and copy number
variation, and it is the most common database used by
researchers for data mining (http://cancergenome.nih.gov) (3).
Different omics data can be utilized as potential biomarkers to
predict the prognosis of different cancer types (4-7).

Furthermore, compared to the actual sample size (i.e.,
hundreds of samples), the scale of omics data is relatively
large, which means that it needs to be processed (i.e.,
dimensionality reduction) rather than used to fit the predictive
model directly. In addition, there are considerable challenges
to performing better dimensionality reduction and variable
selection for identification or prediction in terms of these high-
dimensional omics data. Traditional frequentist approaches
(i.e., regarding unknown parameters as deterministic values,
which means that they can be estimated by the sample data)
for coping with these challenges include ridge (8), the least
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absolute shrinkage and selection operator (lasso) method and
its variants (9-12), and elastic net (13), amongst others. The
comparison of different methods has been studied in the case
of high-dimensional data (14). Benefiting from the
improvement of computing capacity on computers, Bayesian
methods have been developed in recent years which have
better flexibility in dealing with the problem of high-
dimensionality (p>>n) compared to traditional approaches. In
fact, Bayesian approaches have become popular tools for
medical researchers involved in clinical experimental design
and drug development (15). Although some Bayesian methods
have been proposed in terms of prognostic prediction, there is
still a lack of relevant reviews for a comprehensive discussion. 

In the present work, we review these Bayesian methods
involving high-dimensional omics data proposed or applied
for prognostic prediction in cancer. The primary outcome in
this review focuses on relevant survival endpoints, such as
overall survival, progression-free survival and relapse-free
survival. We mainly explain Bayesian survival modelling from
two aspects of single omics and multi-omics integration and
emphasize the superiority of multi-omics integration. This
survey mainly searched PubMed and Web of Science
databases for articles based on key words “cancer” or
“tumour”, “Bayesian”, “survival”, “omics”, “gene”,
“prediction”, and “integrative”. After removing 25 reviews or
meta-analyses, we found a total of 313 articles based on the
above key words. Through reading the titles and abstracts, we
initially excluded those involving experiments or clinical
trials, which left 38 articles that involved Bayesian prognosis
prediction and high-dimensional omics. After reading the full
articles, we finally included 32 in this review. 

Basic Bayesian Methodology

In this section, we briefly review relevant content about
Bayesian inference to help readers understand the basic ideas
of the Bayesian theorem. In survival analysis, semi-parametric
Cox proportional hazards regression is the most common
modelling tool for clinical prediction due to there being no
restriction on the particular survival distribution. Another
alternative is the parametric accelerated failure time (AFT)
model that assumes a direct relationship between covariates and
outcome (generally, the logarithm of survival time), which is
able to acquire more interpretable results. Parameter estimation
for both approaches is based on maximum likelihood (strictly,
partial likelihood for Cox regression), which infers the most
possible values of unknown parameters based on existing
sample data. Differently from the view of frequentists, Bayesian
theory also focuses on “experience” knowledge rather than
sample data alone. Instead of considering the unknown
parameter as a fixed value, Bayesian theory regards it as a
random variable that follows a specific distribution. Before
combining the sample data, an empirical distribution is given,

regarded as a kind of pre-judgement for the unknown parameter,
which is also known as the prior distribution. 

Let θ and y represent the unknown parameter of interest
and sample data, respectively. Then the Bayesian formula
can be expressed in the following form: 

Where P(θ) represents the prior distribution of unknown
parameter θ; P(y|θ) can be regarded as the likelihood
function from sample data. P(y) is the so-called marginal
probability and can be extended as ∫ P(θ)P(y|θ)dθ, which is
irrelevant to the parameter θ to be estimated. Therefore, the
formula can be re-expressed as a kernel form. P(θ|y)
represents the posterior probability, which is the main aim of
our inference. It can be regarded as an update of the prior
information P(θ) which was utilized for Bayesian inference.

Different priors play an essential impact in the calculation
and inference of the posterior distribution. Especially under a
high dimension, variable selection is a necessary process and
can be achieved by setting suitable priors. Reviews of these
variable selection methods have been published (16-20). In
particular, conjugate priors can simplify the complexity of the
calculation of the posterior distribution, such as Gamma-
Poisson prior, inverse-Gamma-normal prior, Beta-binomial
prior, Wishart-normal prior and so on (21). However, this
situation is not common in all Bayesian analyses. In addition,
the integral process becomes more arduous as the parameters
estimated are multi-dimensional (θ=∑θi). Therefore,
approximation techniques would be an alternative choice,
including Laplace approximation (22), variational inference
(23) and sampling-based Markov chain Monte Carlo (MCMC).
Among them, MCMC algorithms are applied widely in
survival analysis. By constructing a Markov chain with a
stationary distribution for simulating the sample of the
posterior distribution, the posterior expectation [E(θ|D)] and
variance of the corresponding parameters can be obtained.
However, the original MCMC algorithm sets a relatively lower
transfer acceptance ratio based on the stable property of the
Markov chain, which meand it takes a long time to reach the
convergence situation, especially with high-dimension data. In
order to obtain a faster convergence speed, several improved
algorithms have been proposed, such as Metropolis–Hastings
(24), Gibbs (25), Hamiltonian Monte Carlo (26), Expectation-
Maximization (EM) cyclical coordinate descent (27).

Bayesian Applications in Cancer for 
Prediction of Prognosis 

Single omics analysis. In this section, single omics analysis
refers to the inclusion of single omics platform data in the
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study, combined with or without clinical factors for prognostic
modelling. Through literature collection, we found that most
of the studies were based on expression profiles, followed by
proteomics and genomics. The relevant characteristics of the
various studies have been summarised in Table I. Bayesian
methods in these studies played a significant role in
dimensionality reduction/variable selection and modelling.

Variable selection based on priors. Here, the variable
selection procedure is performed by a kind of priors with the
specific function of variable selection. The current main
priors include shrinkage priors and spike-and-slab priors.
Shrinkage priors constrain corresponding coefficients
towards zero by imposing a continuous prior distribution.
For instance, Kaderali et al. introduced a hierarchical
Bayesian approach to predict individual survival times based
on expression profiles, which imposed the normal-Gamma
prior on regression parameters. It combined dimension
reduction and regression in one single step to select the most
discriminatory genes under study (28). This method has been
proven to have better prediction performance in
neuroblastoma (29). Nikooienejad et al. introduced a
procedure for Bayesian variable selection that used a mixture
prior comprised of a point mass at zero and an inverse
moment prior, which led to lower false-positive rates in the
variable selection process. Due to the Cauchy-like tail, this
prior introduced comparatively small shrinkage of large
coefficients (30). Considering potential pathway/structure
among genes, Jiang et al. proposed a Bayesian Robit
regression model with hyper-lasso priors for survival-related
feature selection. It took possible group structures into
account automatically without considering a pre-specific
grouping structure (31). Zhang et al. proposed a two-stage
pathway-based Bayesian modelling strategy for survival
modelling, which imposed double-exponential prior (or
Laplace/Bayesian lasso) on the coefficients (32). In short,
those genes mapped into different pathways were fitted into
a Bayesian hierarchical Cox model, and then the prognostic
scores for each pathway, which were calculated by leave-
one-out cross-validation, were regarded as new predictors to
build an integrated prognostic model. Based on proteomics,
Maity et al. developed a jointly Bayesian hierarchical model
to model both the survival time and binary outcome, and
applied a shrinkage prior (i.e., a truncated Cauchy
distribution) to identify common significant proteins that
affected survival and stage (33). Furthermore, the authors
also presented a pan-cancer Bayesian hierarchical AFT
model for survival (34). It adopted the sparse horseshoe prior
for identifying the major proteomic drivers and was allowed
to borrow strength across multiple cancer types by setting a
correlation structure among prior distributions.

Another main prior is the spike-and-slab prior (as a kind of
mixture prior), which includes a point mass at 0 (the spike) and

a continuous distribution (the slab) (35). It can assign different
distributions (the slab or spike) to model different effect sizes.
For example, Duan et al. proposed Bayesian survival regression
with the spike-and-slab prior applied on coefficients for variable
selection (36). It extended EM variable selection (37) to a
parametric survival model with Weibull distribution and utilized
an EM algorithm to quickly obtain the posterior modes of
unknown parameters. Similarly, considering the underlying
structure, Stingo et al. proposed a comprehensive Bayesian
model that achieved two-level selections on the pathway and
genes involved. Except for the prior on coefficients, the Markov
random field prior was applied for obtaining a better separation
between relevant and nonrelevant pathways and fewer false-
positive rates in a model with fairly small coefficients (38). The
efficacy of the above Bayesian approach was further validated
in lung adenocarcinoma for prognostic analysis (39). Peterson
et al. proposed a joint Bayesian modelling strategy for learning
relevant networks and selecting network-structure variables
simultaneously. It applied a mixture prior with a normal density
and a Dirac function for variable selection, which was also
known as the spike-and-slab. The authors also constructed the
network through a Gaussian graphical model to provide a sparse
and interpretable representation of the dependency relationship
from the data (40).

The above Bayesian approaches mainly imposed either a
shrinkage prior or the spike-and-slab prior for regression
coefficients. Recently, a kind of hybrid approach (i.e., the
spike-and-slab lasso) has been proposed, which combines the
advantages of shrinkage and spike-and-slab priors (41). Tang
et al. presented Bayesian generalized linear models based on
the spike-and-slab lasso (27) and extended the spike-and-slab
framework to a Cox model for prognostic model (sslasso
Cox) (42). It proposed a new EM coordinate descent
algorithm to achieve faster converge speed compared to the
MCMC algorithm. Compared to traditional lasso, the
approach is able to estimate the effect of predictors more
accurately. Later, considering possible group structures
among genes, the above survival model was further extended
into the sslasso Cox group, incorporating potential pathway
structure information (43). 

Variable selection based on non-priors. Except for above
mentioned Bayesian variable selection approaches based on
priors, variable selection procedures can be carried out in
other ways, generally speaking, i.e., model-based selection.
In this approach, the priors given to predictors (i.e., to the
coefficients) tend to be assigned as flat priors (e.g., general
normal distribution). Bonato et al. proposed a non-parametric
Bayesian ensemble method that extended Bayesian additive
regression trees to three survival models (Cox, AFT, and
Weibull) using a Bayesian hierarchical framework which
incorporated additive and interaction effects between genes.
It achieved variable selection by Bayesian false discovery
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rate through the Bayesian model averaging (BMA) approach
(45). Zhang et al. proposed a kind of semi-parametric
Bayesian kernel survival model (46), which considered gene
pathway effects related to survival outcome via a kernel
function in a Gaussian process (47). It adjusted the
traditional Bayes factor (48) to adapt multiple-comparison
for performing robust statistical inference. It allowed taking
into account the possibility of nonlinear single-gene effects
and a complicated structure of interactions among genes
within the same pathway. Samorodnitsky et al. proposed a
novel pan-cancer Bayesian hierarchical survival model based
on the somatic mutation profile. They evaluated the optimal
model of fitted data and predictive importance of genes by
calculating the log out-of-sample posterior predictive
likelihood and mean log-posterior likelihood (i.e. model
selection and forward selection) (49). Newcombe et al.
considered the Weibull regression model embedded in a
Bayesian framework based on Reversible Jump MCMC
algorithm, which was called sparse Bayesian Weibull
regression. It applied a beta-binomial prior for indicator
variable γ to construct the model selection framework (if
γ=1, the covariate was included in the model) (50).

Another type of approach, known as BMA, focused on
coping with the model uncertainty problem (i.e. there might
simultaneously exist multiple fitted-well models for the same
data) (51). To accommodate high-dimensional data, iterative
BMA was proposed later (52). Furthermore, Annest et al.
extended iterative BMA to survival analysis through several
modifications to the iterative BMA algorithm, including
using Cox proportional hazards model for ranking individual
genes instead of the between-group to within-group sum of
squares technique, applying a user-specified number of top-
rank genes for BMA algorithm iterating, and re-considering
these discarded models based on an adaptive threshold after
iterations (53). The risk scores of individuals were calculated
by the weighted average of the risk scores calculated for
each model in the set of final models. Kaplan–Meier analysis
in breast cancer and diffuse large B-cell lymphoma showed
a significant difference between high-risk and low-risk
groups based on gene sets selected by this iterative-BMA
approach (53). Similarly, the same approach was further
applied in early-stage lung adenocarcinoma (54), mantle-cell
lymphoma (55) and breast cancer (56).

Multi-omics analysis. Considering that cancer is a highly
heterogeneous disease, single omics information can only
explain part of the potential mechanisms involved in the
development of tumours, which means the above prognostic
models based on single omics data might not be accurate
enough. Therefore, in recent years, multi-omics integrated
modelling analysis has provided the potential direction for us
to comprehensively understand the mechanisms and find
more convincing biomarkers. Moreover, except for potential

structures within omics, there are often complex biological
relationships between different omics platforms (Figure 1),
which brings larger challenges to omics fusion modelling.
Currently, the idea of integration can be divided into two
categories, namely multi-stage analysis and meta-dimensional
analysis (57). The former focuses on the association between
omics and splits into multiple steps for analysis, while the
latter considers that all data are combined simultaneously to
identify complex multi-variable models (e.g., concatenation-
based integration, transformation-based integration, model-
based integration). However, due to distinct modelling
perspectives, the Bayesian approaches discussed below might
not be classified into the above types accurately. In order to
describe these more logically, we briefly categorize the
following literature into three types based on their approach
characteristics. A brief summary of these Bayesian integrative
approaches has been listed in Table II.

Integration based on a multi-stage approach. In this
approach, the idea of the integration model tended to be
divided into multiple steps. For instance, Wang et al
proposed the integrative Bayesian analysis of genomics data
(iBAG), which modelled biological relationships among
different omics by focusing on the “gene-centric” level. It
was composed of two modelling stages, including a
mechanistic model and a clinical model. The former was
used to infer the direct effects of different features (e.g.,
methylation) on gene expression and the latter was used to
construct a final prognostic model based on the result of the
previous step (58). Jennings et al. extended the iBAG to a
generalized version and focused on genes from several key
cancer signalling pathways. Similar to iBAG, in the first
stage, a mechanistic model was constructed by partitioning
the expression of each gene into the factors explained by
methylation, copy number and other features using a
principal component regression model. In the second stage,
the above factors were treated as predictors and established
the clinical model. This study set a normal-Gamma prior on
regression coefficients, which provided the sparsity (i.e. only
a few genes will significantly affect the outcome while
others have no or weak influence) (59). Bernal Rubio et al.
developed a multi-layered Bayesian model for integrating
clinical information and multi-omics. It assessed the inter-
individual variation that could be explained by molecular
predictors related to survival. The research process was
divided into multi-stages: First, a baseline Cox regression
model was used to analyse the association between
clinical/demographic covariates and survival. After
considering the association between omics and
clinical/demographic covariates using principal components
analysis, the baseline model was extended by adding omics
profiles in a linear model with the logarithm of survival time
as the dependent variable (60). 
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Integration based on the extension of existing methods.
Bayesian modelling methods in this part largely focused on
dealing with several specific challenges or problems in the
multi-omics integration process. Vazquez et al. proposed the
Bayesian generalized additive model for integrating high-
dimensional multi-layer omics data (61), which was based on
the generalized additive model framework (62). This
modelling framework allowed the integration of high-
dimension inputs from multiple omics layers, interactions
between omics and different effect architectures across layers.
Srivastava et al. presented the hierarchical relevance vector
machines approach for addressing nonlinear patterns in the
complex interactions within and between different platforms
(gene expression and microRNA). Based on kernel functions,
the nonlinear effects of possible interactions were considered,
and it was possible to evaluate the respective contributions of
different omics simultaneously (63). Ni et al. proposed a
Bayesian hierarchical varying-sparsity regression model to
integrate the genomic, proteomic and clinical information
based on the AFT model, which contributed to identifying
patient-specific prognostic biomarkers (64). Following the
concept of varying coefficients, this study introduced sparsity
into the model, which allowed for flexible interactions and the
sparsity of the protein–outcome relationship to vary
simultaneously with gene expression. Moreover, it thoroughly
considered potential nonlinear relationships between the
proteins and genes by spline-based semi-parametric forms.
Maity et al. proposed a Bayesian structural equation model for
integrating two platforms (namely copy number variation and
mRNA) data (65). Considering the potential direction among

different platforms (biological relationships), a latent variable
in the structural equation was introduced to overcome the
challenge that a specific omics component may or may not
necessarily affect other specific omics components.
Furthermore, a basic problem might exist in the integration
analysis, that is, an insufficient valid sample size (omics data
may not be available for all patients). Fortunately, Chekouo et
al. proposed a novel Bayesian integrative multi-regression
model for dealing with this problem. In their study, multiple
regression models were constructed to make full use of the
sample data of each omics rather than just the complete data
across all platforms (66). The key point was to apply the
Markov Random Fried prior for borrowing strength across
groups, which means that it encouraged selecting the same
predictors across multiple models.

Integration based on network/graph structure. Here, the
integrative relationship of multiple omics was portrayed by a
network/graph structure to establish prognostic models for
screening key cancer biomarkers. Wang et al. developed an
integrative network-based Bayesian analysis approach for
analyzing multi-platform high-dimensional genomic data. It
assumed one triplet as the combination of the expression level
for one gene, one microRNA and the associated clinical
outcome for modelling the underlying biological relationship,
and considered eight possible triplet structures (models).
Based on Gaussian graphical models, this study utilized Bayes
factors with hyper-inverse Wishart g-prior to perform the
model selection procedure (67). Chekouo et al. proposed a
network-based Bayesian hierarchical model to identify

CANCER GENOMICS & PROTEOMICS 19: 1-11 (2022)

6

Figure 1. Biological relationships among different omics data and association with clinical phenotype. For example, single nucleotide polymorphism
(SNP) and copy number variation (CNV) at the genome level; gene expression (mRNA) at the transcriptome level; proteins at the proteome level.
Gene expression is affected by epigenetic modification, such as DNA methylation, microRNA, and long non-coding RNA. At the same time, post-
translational modification (PTM) also influences the activity of different proteins.
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microRNAs and target genes associated with survival. The
microRNA regulatory network was modelled as a Bayesian
network and a specific prior was constructed to link the two
omics, which gave a higher probability of survival related to
those highly connected biomarkers in the regulatory network
(68). Kundu et al. proposed a novel multi-scale Bayesian
approach that distinguished essential genomic drivers of
cancer progression from integrative graphical structure
learning. The process of their study was divided into two
parts. Firstly, the dependence relationship within and between
platform-specific features was assessed. Then identification of
important prognosis-related molecular markers was performed
by the above dependence relationship. Structured variable
selection was implemented by identifying important cliques
(i.e., the overlapping functional subgroups within/across
platforms that influenced clinical outcome together) through
computing corresponding marginal inclusion probabilities and
eliminating unimportant covariates in cliques identified
through computing Bayesian 95% credible intervals (69).

Discussion

As a summary of existing literature, the current study
contributes to developing the prognostic modelling of cancer
based on high-dimensional data and expanding new
ideas/strategies for researchers. After briefly introducing the
basic Bayesian theorem, we mainly discussed current
published Bayesian approaches based on single/multiple
omics data with/without clinical characteristics. As one
essential part of Bayesian inference, prior information plays
a critical role in the process. Notably, although variable
selection can be accomplished by model-based approaches
(such as BMA), Bayesian inference depends largely on the
setting of suitable priors under the assumption that only a
small subset of predictors significantly influence the survival
situation. The correct usage of priors will help improve the
performance of the predictive model but it is also a
seemingly difficult task to choose appropriate priors. A
previous study explored the effects of different types of
Bayesian variable selection based on simulated and actual
data in a relatively low-dimensional situation (20). However,
in the case of high dimensions, different prior choices still
need to be fully discussed. Although we perhaps find
references from previous similar literature for specific
analysis goals, it might be more appropriate to be guided by
available data at hand. 

Bayesian prognostic modelling with singe omics, to a certain
extent, might improve predictive accuracy. Nevertheless, some
limitations still exist. Tumour development is frequently
accompanied by hundreds of distinct molecular changes, from
many kinds of genomic and epigenetic alterations to their
interactions. This means that interesting clinical outcomes
might be affected by the use of other platforms (for example,

microRNA, methylation) when single omics is utilized for
prognosis modelling and screening of potential biomarkers,
which might weaken the reliability of evidence for powerful
targeted markers.

In fact, multi-omics integration might be more
advantageous in investigating the biological mechanism of
tumour progression or prognosis modelling for finding
reliable targets in the era of precision medicine. A large-scale
benchmark study from TCGA discovered that methods taking
into account the multi-omics structure had better predictive
performance, although the utility of multi-omics data was
limited (70). The current methods (mainly machine learning)
in the multi-omics integration field have been reported in a
previous review, although it was not specifically illustrated
from the Bayesian perspective (71). In relevant Bayesian
articles involving multi-omics fusion, a core issue is also how
to integrate different large-scale platforms, in addition to
dimension reduction/variable selection. Integration based on
biological relationships has better interpretability in the final
result than simple merging. Then grasping the complicated
relationship between multiple omics in the integration process
will improve the effectiveness of the predictive model, such
as interactions within/between platforms (61, 63, 64), non-
linear relationships (63, 64). Moreover, relying on the
complex network or intuitive graph model in the Bayesian
framework might contribute to comprehensively describing
the relationship of multiple omics for better survival
modelling (68, 69). 

However, several deficiencies exist that need to be further
discussed or explored in the above approaches. i) Model
validation. Nowadays, evaluating the performance of a
prognostic model is increasingly relying on effective internal
or external validation. Compared with external validation,
internal validation is convenient to implement, such as k-fold
cross-validation and bootstrapping. Although internal
validation used in most literature was able to verify the
performance of the models, adopting an independent external
cohort would further illustrate the reliability of the predictive
model. ii) The occurrence and development of cancer is a
dynamic process, which also means that the integration of
different omics may also be considered a dynamic process,
with complex patterns of feedback loops both within and
between platforms. Dynamic modelling could be a major
challenge. iii) Computational complexity or burden must also
be considered, especially when integrating multiple high-
dimensional omics under the Bayesian framework. iv)
Practicality needs to be deliberated. Most integrative studies
that were validated proposed integrative Bayesian
approaches on glioblastoma. The actual effect of extending
these to other tumour types is still unclear, which needs more
relevant literature support in the future. In addition, model
interpretability is also an issue not to be ignored, primarily
when multi-omics is utilized for integration into the Bayesian
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modelling process. The real improvement in utility of such
screened biomarkers needs further evaluation after clinical
transformation.

As for prognostic modelling in the future, new biostatistical
methods should overcome the above limitations. Approaches
based on the Bayesian theorem might provide more flexible
and accurate results regarding the prognosis of cancer.
Interestingly, as well as these molecular omics data, emerging
radiomics might also be considered in the modelling
framework for acquiring optimal predictive accuracy (72, 73).
The integration of these omics will help us understand the
development of tumours at multiple levels for better predicting
the prognosis of patients.

Conclusion

In summary, this review systematically collated the Bayesian
approaches based on high-dimensional molecular data for
prognostic analysis in cancer, especially the multi-omics
fusion method. These approaches have been proposed chiefly
in the past 10 years. From these studies, multi-omics
integration methods with different strategies for feature
selection have better predictive performance and more
excellent value in finding biomarkers that affect prognosis
in cancer. However, multi-omics integration technology often
faces a key challenge, namely how to effectively integrate
the relationship between multiple platforms. At the same
time, the possible intractable issue involving the estimation
of the complex posterior distribution is also worthy of
attention. Therefore, further research is necessary.
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