
Abstract. Small-cell lung cancer, a neuro-endocrine type of
lung cancers, responds very well to chemotherapy-based
agents. However, a high frequency of relapse due to adaptive
resistance is observed. Immunotherapy-based treatments with
checkpoint inhibitors has resulted in improvement of
treatment but the responses are not as impressive as in other
types of tumor. Therefore, identification of new targets and
treatment modalities is an important issue. After searching
the literature, we identified eight down-regulated microRNAs
involved in radiation- and chemotherapy-induced resistance,
as well as three up-regulated and four down-regulated
miRNAs with impacts on proliferation, invasion and apoptosis
of small-cell lung cancer cells in vitro. Furthermore, one up-
regulated and four down-regulated microRNAs with in vivo
activity in SCLC cell xenografts were identified. The
identified microRNAs are candidates for inhibition or
reconstitution therapy. The corresponding targets are
candidates for inhibition or functional reconstitution with
antibody-based moieties or small molecules.

Small-cell lung cancer (SCLC) is an exceptionally lethal
malignancy comprising 13-15% of all lung cancer (1), with
250,000 cases diagnosed annually worldwide (1). SCLC is
highly sensitive to platinum-based chemotherapy,
topoisomerase inhibitor etoposide, and to lurbinectidin, a
recently approved DNA binder (2, 3). However, disease

recurrence and metastasis to the brain, adrenal glands, bone
and liver after treatment remains an issue (2). Inactivating
mutations in retinoblastoma (RB) or TP53 are most commonly
observed, however, these alterations are not druggable and, in
contrast to non-small-cell lung cancer no tractable drivers or
fusion proteins have been observed (4). Monoclonal antibodies
nivolumab and pembrolizumab, directed against checkpoint
inhibitors, have been approved as first-line treatment of SCLC
together with chemotherapy and for treatment of relapsed
disease (5). However, the therapeutic benefit is not as
pronounced as observed with other types of tumor (5).
Furthermore, SCLC subtypes have been identified based on
differential expression of transcription factors achaete-scute
homolog (ASCL1), neurogenic differentiation factor
(NeuroD1), yes-associated protein (YAP1) and POU class 2
homeobox 3 (POU2F3) (6). These subtypes might respond to
drugs with different vulnerability (6). Several agents targeting
T-cell immunoreceptor with Ig and ITIM domains (TIGIT),
cytotoxic T-lymphocyte antigen 4 (CTLA4), or cyclin-
dependent kinases 4 and 6 are in phase III clinical studies or
under Food and Drug Administration review (7). Nevertheless,
there is an urgent need to identify new targets and treatment
modalities for SCLC. Here, we focus on microRNAs (miRs)
as therapeutic agents and as tools for identification of SCLC-
related targets for therapeutic intervention.

MicroRNAs – Role in Oncology

miRs are synthesized by RNA polymersase II in the nucleus
as precursor RNAs, processed and exported into the cytoplasm
(8-10). One strand of a 22 nucleotides (nts) complex is
maintained (guide strand), the other strand (passenger strand)
is discarded (8-10). The guide strand binds to the 3’-
untranslated region of corresponding mRNAs and induces
their degradation or inhibits their translation (8-10). A single
miR can interact with several different mRNAs and therefore
can interfere with several pathways and has the potential to
rewire oncogenic pathways (11). miRs can exert an oncogenic
or tumor-suppressive role, depending on the context (12). A
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tumor-suppressive role is mediated by miR-16-1 and miR-15a
by targeting anti-apoptotic protein BCL2 apoptosis regulator
(BCL2). Their deletion in mice causes B-cell chronic
lymphocytic leukemia corresponding to the disease in humans
and its cytogenetic characteristics (13, 14). The oncogenic role
of miRs was demonstrated by induction of hepatocellular
carcinoma through liver-specific expression of miR-221 in
transgenic mice (15). miRs can have an impact on all stages
of carcinogenesis, including metastasis and anti-tumoral
immune response (16). We recently summarized the impact of
miRs on growth and metastasis of hepatocellular carcinoma
(17), pancreatic cancer (18), non-small-cell lung carcinoma
(19), breast cancer (20) and prostate cancer (21). In this
review, we focus on the role of miRs with respect to
chemoresistance, tumor growth and metastasis of SCLC. 

miRs Involved in Chemoresistance 
and Radioresistance of SCLC

All of the miRs discussed are down-regulated in SCLC-
cancer related cell lines or clinical specimen in comparison
to corresponding controls.

miR-7. miR-7 (Figure 1) affects the multidrug-resistance
protein ATP-binding cassette subfamily C member 1 (ABCC1)
(22), inward-rectifier potassium ion channel 2.1 (KIR2.1) (23)
and poly (ADP-ribose) polymerase 1 (PARP1) (24). 

ABCC1 expression is inversely correlated with miR-7 (22).
ABCC1 is a transmembrane drug transporter containing three
membrane-spanning domains and two cytosolic nucleotide-
binding domains (25) and is expressed in many types of
multidrug-resistant cancer (26). Overexpression of ABCC1 is
predictive for resistance to chemotherapy in SCLC (27, 28). A
low-level expression of miR-7 correlated with shorter overall
survival in patients with SCLC (22). In the SCLC cell line
H69AR, miR-7 down-regulation was shown to be responsible
for resistance to adriamycin and etoposide (22, 29).

miR-7 also targets KIR2.1, a member of the classical inward
rectifying potassium channel family (23, 30-32). KIR2.1 was
up-regulated five-fold in H69AR cells in comparison to H69
SCLC cells (23). KIR2.1 induced resistance to apoptosis
following exposure to chemotherapeutic drugs (23).
Overexpression of KIR2.1 in H69 and H466 SCLC cells
enhanced their growth in immuno-deficient mice (23). Up-
regulation of miR-7 sensitized H69AR cells to adriamycin,
cisplatin and etoposide (23). RAS-protein kinase C–mitogen-
activated protein kinase (MEK) signaling was identified as an
important inducer of KIR2.1, which was down-regulated by
RAS-protein kinase C inhibitor staurosporine and MEK
inhibitor UO126 (23).

PARP1 was identified as a target in doxorubicin-resistent
SCLC cell line H69AR in comparison to H69 parental cells
(24). PARP1 was resolved as a target of miR-7 (24, 34).

Inhibition of miR-7 resulted in increased homologous repair
in doxorubicin-resistant SCLC cells (24). miR-7 reduced
expression of breast cancer susceptibility protein 1 (BRCA1)
and repair protein RAD51 homolog1 (RAD51), and discrupted
homologous recombination-based repair, leading to
doxorubicin resistance by targeting PARP1 (24). PARP1 has
a multi-faceted role in DNA repair and chromatin remodeling
(35). PARP1 inhibitors are approved anticancer agents based
on a synthetic-lethality based mode of action (36-38). 

miR-22. miR-22 (Figure 1) was down-regulated in NCI-466
SCLC cells and inhibited radiosensitivity by targeting Werner
helicase-interacting protein-1 (WRNIP1) (39). WRNIP1 is an
ATPase which can protect replication forks and co-operates
with RAD51 to safeguard the integrity and maintenance of
the genome (40-42). Overexpression of miR-22 promoted
apoptosis and inhibited migration of NCI-466 cells (39).

miR-24-3p. Autophagy is a strategy by which resistance to
chemotherapy is conferred (43, 44). Etoposide- and cisplatin -
resistant SCLC cells exhibited increased autophagy (45). miR-
24-3p (Figure 1) was down-regulated in SCLC cells and
expression of autophagy-related 4A cysteine peptidase
(ATG4A) was blocked (45). Expression of miR-24-3p can
suppress autophagy of SCLC cells by directly targeting ATG4A
(45). It has been shown that inhibitors of autophagy can
sensitize chemoresistant cells to anticancer therapy in clinical
trials (45, 46).

miR-100. miR-100 (Figure 1) was shown to target homeobox
transcription factor HOXA1, which was associated with poor
prognosis in patients with SCLC, and its down-regulation
mediated chemoresistance (47). HOXA1 was found to be
expressed in 46% (29/63) of tumors from patients with
SCLC. Expression of miR-100 in multidrug-resistant SCLC
cell line H69AR reversed resistance to cisplatin and
etoposide (47). HOXA1 is involved in progression and
prognosis of several types of tumor. It mediates tumor
proliferation and poor prognosis in gastric cancer via cyclin
D1 (48); enhances proliferation, invasion and metastasis of
prostate cancer cells (49); and correlates with poor prognosis
in patients with hepatocellular carcinoma (50). 

miR-138. miR-138 (Figure 1) was down-regulated in SCLC
tissues and three corresponding cell lines (51). In NCI-H2081
SCLC cells, miR-138 reduced cell growth and inhibited cell-
cycle progression (51). Histone H2A variant X (H2AX) was
identified as a target of miR-138 (51). H2AX knockdown
achieved a similar effect as observed for miR-138
overexpression, whilst its induction abolished miR-138-
mediated SCLC cell growth and inhibition of cell-cycle
progression (51). Expression of miR-138 was shown to confer
SCLC cells with greater DNA-repair capacity and reduced
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their resistance to chemotherapeutic agents (51). H2AX is
involved in double-stranded DNA repair, chromatin
remodeling and contributes to nucleosome formation (52-55).

miR-200b. miR-200b (Figure 1) targets zinc finger E-box
homeobox2 (ZEB2), which correlated with poor pathologic
stage and shorter survival (35). ZEB2 was found to be
expressed in 23.5% (16/68) of cases of SCLC (56). Inhibition
of ZEB2 expression making use of small-interfering RNA
(siRNA), sensitized SCLC-related cells to chemotherapeutic
drugs by enhancing drug-induced apoptosis accompanied by
S-phase arrest (56). ZEB2 is a transcription factor with eight
zinc fingers and a homeodomain (57). ZEB2 has been
identified as a regulator of nervous system development (58,
59). In cancer, ZEB2 plays an instrumental role in epithelial
mesenchymal transition (EMT), cancer-stem cell traits,
apoptosis, survival, tumor recurrence and metastasis (60). 

miR-335. miR-335 (Figure 1) was found to target WW
domain-binding protein 5 (WBP5), expression of which was

10-fold increased in H69AR compared to H69 SCLC cells.
WBP5 induced multidrug resistance by promoting cell
proliferation and inhibiting apoptosis in H69AR cells (61).
Expression of WBP5 was associated with shorter survival in
patients with SCLC (61). WW binding domains are typically
35-40 amino acids in length and can interact with a variety
of different peptide ligands, including motifs with core
proline-rich sequences (62). WBP5 was shown to be
involved in multidrug resistance of SCLC through the Hippo
pathway [WBP5-tyrosine kinase ABL-mammalian Ste-20-
like kinase (MST2)-yes-associated protein1 (YAP1)]
pathway (61). WBP5 can induce nuclear accumulation of
YAP1, a transcription factor which induces genes involved
in development and survival (63). Inhibition of YAP1 by
verteporfin was shown to blunt multidrug resistance in
H69AR cells (61). WBP5 can bind to ABL, an upstream
activator of ser-thr kinase MST2 of the Hippo pathway
(64,65). It was shown that WBP5 promotes tumor growth
and resistance of H69 cells to adriamycin and cisplatin in
nude mice (61). 
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Figure 1. miRs involved in chemo- and radio-resistance of small-cell lung cancer (SCLC) cells. Downward arrows indicate down-regulation of miRs
in SCLC in comparison to controls. ABCC1: ATB binding cassette subfamily C member; ADM: Adriamycin; ATG4A: autophagy-related protein 4;
BMX: cytoplasmic tyrosine kinase BMX; CDDP: cisplatin; ETK: non-receptor tyrosine kinase Etk; H2AX: histone H2AX; HOXA1: homebox protein
HOXA1; KIR2.1: inward rectifier ion channel 2.1; PARP1: poly (ADP ribose)-polymerase 1; TSPAN 12: tetraspanin 12; VP16: etoposide; WBP5:
ww domain-binding protein 1; WRNIP1: ATPase WRNIP1; ZEB2: zinc finger E-box-binding homeobox 2. 



miR-335 was also down-regulated in SCLC cell lines
H69AR and H446DDP (66). Overexpression of miR-335
inhibited migration of H69AR and H446DDP cells in vitro and
their tumor growth in vivo, whereas its inhibition resulted in
opposite effects (66). PARP1 was identified as a direct target
of miR-335 (66). Chemoradiosensitiviy of SCLC cells was
increased by down-regulation of PARP1 and nuclear factor ĸB
(66). Down-regulation of miR-335 resulted in resistance to
adriamycin, cisplatin and etoposide in SCLC cell lines H69AR
and H446DDP (66). PARP1 detects single-strand DNA breaks
and recruits other enzymes involved in DNA repair (67, 68). 

miR-495. miR-495 (Figure 1) was down-regulated in SCLC
and inhibited chemoresistance by targeting endothelial
tyrosine kinase/bone marrow X kinase (ETK/BMX) (69) and
tetraspanin 12 (TSPN12) (70). Functional assays were
performed in SCLC cell lines NCI-H446, NCI-H69 and their
multidrug-resistant derivatives H446AR and H69AR (69,
70). miR-495 was expressed at a lower level in SCLC
compared to normal lung tissues (69, 70).

miR-495 inhibited apoptosis induced by chemotherapeutic
agents such as adriamycin, cisplatin and etoposide by

targeting ETK/BMX (69). In nude mice, antagomirs directed
against miR-495 induced rapid growth of xenografts derived
from H69 and H446 cells (69). Down-regulation of miR-495
promoted proliferation, migration invasion and tumor
growth of H446 and H69 SCLC in vitro and in vivo (69).
ETK/BMX has been shown to mediate drug resistance in
SCLC (71), to regulate the cytoskeleton and migration (72),
and to up-regulate vascular endothelial growth factor (73).
ETK/BMX has also been identified as a mediator of
resistance in acute myeloid leukemia (74) and as a regulator
of multiple tyrosine kinases in hormone-refractory prostate
cancer (75). 

miR-495 was also found to target TSPAN12, which is related
to resistance to cisplatin and etoposide (60). TSPAN12
promoted proliferation, migration and tumor growth in drug-
resistant SCLC cells H466AR and H69AR (60). TSPAN12
belongs to the tetraspanin family of transmembrane receptors
characterized by four transmembrane domains and two
extracellular loops (76). Tetraspanins are involved in signaling
platforms by forming tetrapanin-enriched microdomains (77).
Tetraspanins can mediate tumor-promoting but also metastasis-
inhibitory processes (78-80). 
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Figure 2. miRs Up- and down-regulated in small-cell lung cancer with in vitro activity. Upward arrows indicate increased expression and downward
arrows point to decreased expression of the corresponding miRs in comparison to control tissues. ACh: Acetyl-choline; APO: apoptosis; FLOT2:
flotillin 2; PTPRN: protein tyrosine phosphatase receptor type N; INV: invasion; ITPKB: inositol-triphosphate-3 kinase B; MCL1: myeloid cell
differentiation protein 1; PROL: proliferation; SLC7A5: solute carrier family 7A5; WWOX: WW containing oxidoreductase.



miRs Up-regulated in SCLC With 
Activity in Preclinical In Vitro Systems

miR-25. miR-25 (Figure 2) was up-regulated in SCLC cell
lines and tissues (81). Down-regulation of miR-25 induced
cell-cycle arrest and inhibited invasive capability of H510
SCLC cells (81). Overexpression of miR-25 reversed the
effect of miR-25 down-regulation in H510 cells (81). miR-
25 acted as an oncogene in SCLC cell lines (81). Cyclin E2
has been identified as a direct target of miR-25. These
findings seem to be counterintuitive since cyclin E has been
identified as a regulator of S-phase activity by binding to and
activating cyclin-dependent kinase 2 and by phosphorylation
of pocket proteins initiating a cascade of events that leads to
the expression of S-phase-specific genes (82, 83). A role of
cyclin E in DNA replication, control of genomic stability and
regulation of the centrosome cycle has also been reported
(82, 83). Cyclin E2 is aberrantly expressed in many types of
tumors and is increased in cancer-derived cell lines (84).
Overexpression of cyclin E in transgenic mice was shown to
induce cancer by acting as a dominant oncogene (85). Due
to its role in proliferation and apoptosis, cyclin E2 may be
an important target for cancer therapy (86). However, it was
shown that cyclin E is dispensable for the development of
higher eukaryotes and for the division of eukaryotic cells
(85). In any case, down-regulation of cyclin E2 in SCLC as
reported in (81) might activate a novel tumor-promoting
pathway which has to be resolved in further detail. 

miR-134. In H69 SCLC cells, miR-134 (Figure 2) promoted
growth, inhibited apoptosis and activated the extracellular
signal-regulated kinase 1/2 (ERK1/2) pathway (87). WW
domain-containing oxidoreductase (WWOX) has been
identified as a direct target of miR-134 (87). WWOX has two
WW domains responsible for protein–protein interactions
and a short dehydrogenase/reductase domain which catalyses
conversion of low-molecular-weight ligands, most likely
steroids (88). Ectopic expression of WWOX inhibited
anchorage-dependent growth of MDA-MB-435 and T47D
breast cancer cells and attenuates tumorigenicity of MDA-
MB-435 cells in vivo (89). In lung cancer, WWOX gene
restoration prevented tumor growth in vitro and in vivo (89).
WWOX localizes to the Golgi apparatus and behaves as a
tumor suppressor (90). WWOX is frequently down-regulated
in human tumors (91, 92).

miR-375. miR-375 (Figure 2) was found to be up-regulated
in lung adenocarcinoma and SCLC, and down-regulated in
lung squamous cell carcinoma (93). miR-375 promoted
proliferation of NCI-H82 SCLC cells (93). Inositol-
triphosphate-3 kinase B (ITPKB) was identified as a target
of miR-375 (93). ITPKB regulates inositol phosphate
metabolism by phosphorylation of second messenger

inositol-1,4,5 triphosphate (94, 95). ITPKB is associated
with the Ca signaling pathway and is enriched at actin
filaments and invaginations of the nuclear envelope (96).
ITPKB also regulates immune functions and is required for
B- and T-cell development (96). The role of miR-375 and
down-regulation of ITPKB in SCLC remains to be
investigated in further detail.

miRs Down-regulated in SCLC With Activity 
in Preclinical In Vitro Systems

miR-26a. Low level expression of miR-26a (Figure 2) was
detected in SCLC cell lines NCI-H196, NCI-H466 and NCI-
H1688 in comparison to MRC5 non-transformed control
cells (97). Transfection of these cell lines with a miR-26a
mimic suppressed proliferation, migration and colony
formation (97). Myeloid cell leukemia protein 1 (MCL1) has
been identified as a target of miR-26a (97). MCL1 is a
member of the BCL2 family and plays a role in inhibition of
apoptosis induced by tumor necrosis factor-related apoptosis-
inducing ligand (98, 99). Inhibition of MCL1 with small
molecules has been pursued in several types of cancer, such
as myeloma, follicular lymphoma and advanced SCLC in
advanced clinical studies (100-102). MCL1 inhibition has
been shown to be effective against a subset of SCLCs with
high MCL1 and low B-cell lymphoma-extra large (BCL-XL)
expression (101).

miR-126. miR-126 (Figure 2) inhibited proliferation of H69
SCLC cells by causing delay in the G1 phase of the cell-
cycle (102). miR-126 has been identified as a direct target
of solute carrier family 7, member 5 (SLC7A5) (102).
Suppression of SLC7A5 by RNAi delayed SCLC cells in
the G1 phase (103). SLC7A5 is part of cluster of
differentiation 98 (CD98), and also referred to as large
neutral amino acid transporter 1. The other component of
CD98 is the CD98 heavy subunit protein encoded by the
SCL3A2 gene. CD98 preferentially transports branched
chain and aromatic amino acids and is overexpressed in
several types of cancer (103-105). SCL7A5 can activate
mechanistic target of rapamycin (mTOR), which
phosphorylates p70S6 kinase and eukaryotic translation
factor 4E-binding protein 1 (4EBP1), resulting in production
of growth-promoting proteins (106). mTOR is activated in
a large percentage of SCLCs and genetic alterations in the
phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT
serine/threonine kinase 1/mTOR pathway have been
identified in 36% of patients with SCLC (107).
miR-342. Protein tyrosine phosphatase receptor type N
(PTPRN), also known as islet antigen 2 (IA-2), was identified
as a target of miR-342 (Figure 2) in SCLC cell lines NCI-H82
and NCI-345 (108). Down-regulation of PTPRN by siRNA
suppressed SCLC growth as well as cell acetyl choline (ACh)
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content and secretion (109). ACh rescued the inhibitory
effects of PTPRN siRNA and of miR-342 mimic on SCLC
proliferation (109). ACh is an autocrine growth factor which
facilitates SCLC growth (109). PTPRN is a transmembrane
tyrosine receptor phosphatase and has an important role in
secretion of hormones and neurotransmitters in SCLC cell
lines, such as follicle-stimulating hormone, insulin,
luteinizing hormone, dopamine, renin and norepinephrine
(110, 111). PTPRN is highly expressed in tumors and cell
lines of neuro-endocrine origin (112). It also has been
identified as an auto-antigen that is reactive with sera of
patients with insulin-dependent diabetes mellitus (112). 

miR-485-5p. miR-485-5p (Figure 2) was reduced in SCLC
tissues compared to adjacent normal tissues (113). miR-485-
5p inhibited proliferation, migration and invasion of NCI-
H466 and NCI-485-5p SCLC cell lines (113). Flotillin 2
(FlOT2) has been identified as a target of miR-485-5p (113).
FLOT2 was found to be up-regulated in SCLC tissues and
correlated with worse prognosis (113). FLOT1 and -2 are
lipid-raft marker proteins which assemble into heterotetramers,
forming molecular scaffolds to regulate clustering at the
plasma membrane (114, 115). They are involved in signal
transduction, nerve regeneration, endocytosis and lymphocyte
activation (114, 115). Up-regulation of FLOT2 is related to
lymph node metastasis and poor prognosis in patients with
solid tumors (116). 

Dysregulated miRs With Activity in 
Preclinical In Vivo Models of SCLC

Up-regulated miRs
miR-665. Inhibition of miR-665 (Figure 3) attenuated
proliferation, invasion and migration of NCI-H446 SCLC cells
(117). In vivo, inhibition of miR-665 led to attenuation of
tumor growth (117). Lethal giant larvae protein homolog-1
(LLGL1) was identified as a target of miR-665 (117). LLGL1
is part of the cytoskeletal network and is associated with non-
muscle myosin II heavy chain (117). Overexpression of
LLGL1 inhibited proliferation and migration, and increased
cellular adhesion and apoptosis (118, 119). Loss of LLGL1
reduced cellular adhesion and dissemination in colorectal
cancer, melanoma and gastric cancer; its reduced expression
has been noted in lung squamous cell carcinoma (120-123). 

Down-regulated miRs
miR-216a-5p. miR-216a-5p (Figure 3) reduced proliferation
and migration of H69 SCLC cells (124). miR-216a-5p
targeted BCL2 and modulated BCL2-like protein (BAX) and
BCL2 antagonist of cell death (BAD) (124). In vivo
inhibition of miR-216a-5p promoted tumor growth of H69-
derived xenografts in mice, whereas a miR-216 mimic
inhibited it (124). BCL2 is an anti-apoptotic protein which

is expressed in SCLC (125, 126). BCL2 inhibitor venetoclax
was shown to be active in preclinical SCLC-related in vitro
and in vivo systems with high BCL2 expression (127).
Venetoclax is approved for chronic lymphocytic leukemia
and small lymphocytic leukemia, and is also part of a
combination therapy for acute myeloid leukemia (128).
Currently clinical studies of treatment of relapsed or
refractory SCLC with oral venetoclax in combination with
irinotecan and venetoclax in combination with atezolizumab
are underway (NCI04543916).

miR-335. Investigations into the role of miR-335 (Figure 3)
were performed with SCLC cells lines SBC-3 and SBC-5. The
latter gives rise to bone metastasis in immuno-deficient mouse
models, SBC-3 does not. Reduced expression of miR-335 in
SBC-5 in comparison to SBC-3 cells was observed (129).
Overexpression of miR-335 in transfected SBC-5 cells reduced
proliferation, migration and colony formation. Skeletal lesions
from miR-335-transfected SBC-5 cells were not observed in
immunodeficient mice (129). Insulin-like growth factor
receptor 1 (IGF-1R) and osteoblast receptor activator of nuclear
ĸB ligand (RANKL) were identified as targets for miR-335
(129). IGF-1R promotes proliferation, invasion, migration and
inhibits apoptosis of tumor cells (130). IGF-1R knock-out mice
exhibit reduced bone metastasis of breast cancer xenografts
(131). Prerequisite for osteolytic metastases is the activation of
osteoclasts. Osteoblasts secrete RANKL which interacts with
osteoclast precursors displaying RANK receptor on their
surface, resulting in their maturation into functional osteoclasts.
Osteoblasts also produce osteoprotegerin, a soluble decoy
receptor which can block RANK/RANKL signaling (132-134).
miR-335 inhibits IGF-1R and RANKL, two validated
mediators of bone metastasis.

miR-450. Down-regulation of miR-450 (Figure 3) correlated
with reduced survival in patients with SCLC (135). miR-450
inhibited proliferation and invasion of H510A SCLC cells
and growth as xenografts implanted into immunodeficient
mice (135). Interferon regulatory factor 2 (IRF2) was
identified as a target of miR-450 (135). Overexpression of
IRF2 in H510A cells abrogated the inhibitory effects of miR-
450 (136). IRF2 is a member of IRF protein family which
possess an N-terminal DNA binding domain characterized by
five well-conserved tryptophan-rich repeats recognizing IFN-
stimulated response elements and a C-terminal region which
mediates interactions with family members, transcription
factors and co-factors conferring specific activities on each
IRF (136, 137). IRF2 acts as an oncogene and is involved in
regulation of histone 4 gene transcription (138, 139).
Overexpression of IRF2 promotea the growth of pancreatic
cancer cells (140). In colorectal cancer, IRF2 has been
identified as a driver of immune suppression and immune
therapy resistance (141). 
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miR-886-3p. miR-886-3p (Figure 3) was down-regulated in
SCLC (141). In NCI-H446 and NCI-H1688, overexpression
of miR-886-3p induced mesenchymal–epithelial transition,
a change in cellular phenotype from spindle shape to round
shape (141). Transforming growth factor β1 (TGFβ1) has
been identified as a target of miR-886-3p (141). miR-886-
3p-mediated mesenchymal epithelial transition was induced
by suppression of TGFβ (141). Intratumoral injection of a
miR-886-3p conjugate to cholesterol resulted in necrosis of
tumor tissue and suppression of intramuscular invasion
(141). Suppression of lung cancer xenograft growth of NCI-
H446 cells was observed after systemic delivery of a
cholesterol conjugated miR-886-3p mimic after tail vein
injection of tumor cells. Targeting EMT by either inhibition
of TGFβ or by administration of miR-886-3p may be a
concept for treatment of SCLC which has to be validated in
further detail. EMT is a basic principle of tumor progression
(142-144).

Conclusion

We identified miRs which affect chemoresistance and
radioresistance, as well as in vitro and in vivo properties of
SCLC cell lines. Up-regulated miRs are candidates for
inhibition or reconstitution of the corresponding targets.
Down-regulated miRs are candidates for reconstitution
therapy or inhibition of the corresponding targets with small
molecules or antibody-related entities. 

Up-regulated miRs can be inhibited with miR antagonists,
which are single-stranded RNAs composed of 12-25
nucleotides complementary to the corresponding mRNA or
with RNA sponges (145, 146). The latter are composed of
multiple miR-binding sites competing with binding of miRs
to corresponding mRNA (145, 146). In the case of down-
regulated miRs, reconstitution therapy is the indicated
therapeutic intervention (147, 148) or re-expression of the
corresponding targets, an approach which faces druggability
issues due to nonspecific interactions.

Eight down-regulated miRs were found to mediate
chemo/radioresistance (Figure 1). They are candidates for
reconstitution therapy. PARP1 (miR-335) can be inhibited by
several approved small molecules and is a validated target
(35, 36). ETK (BMX) (miR-495), TSPAN12 (miR-495) and
KIR2.1 (miR-7) are druggable with small molecules or
antibody-derived entities. However, the role of the identified
miRs in resistance of relapsed SCLC needs to be validated
in more detail. 

Three up-regulated and four down-regulated miRs
affecting proliferation, invasion and apoptosis of SCLC cell
lines in vitro were identified (Figure 2). MCL1, which is
targeted by miR-26a, seems to be a promising target. MCL1
inhibition has been shown to be effective in a subset of
preclinical SCLC-related in vitro models with high MCL1
and low BCL-xL expression (101). PTPRN (miR-342) and
SCL7A5 (miR-126) are druggable targets and the
corresponding miRs are candidates for miR-inhibitory
agents. However, more target validation experiments are
necessary to resolve the relevance of the latter targets. 

Furthermore, one up-regulated and four down-regulated
miRs with efficacy in preclinical SCLC-related in vivo
models were identified (Figure 3). The down-regulated miRs
are candidates for substitution therapy. BCL2 (miR-216-5p)
is inhibited by venetoclax and it has been shown that
venetoclax is effective in preclinical in vivo models with
high BCL2 expression (127). miR-335 targets IGF-1R and
RANKL, which mediate proliferation, invasion and bone
metastasis of SCLC and both represent druggable targets
(130, 132). miR-886-3p inhibits TGFβ1, a possible target for
interfering with EMT (143, 144). For these miRs and
corresponding targets, more target validation experiments in
non-small-cell lung carcinoma-related systems are necessary
in order to substantiate their role in SCLC. 
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Figure 3. miRs Up- and down-regulated with activity in preclinical
small-cell lung cancer-related in vivo models. Upward arrows: Up-
regulated miRs; downward arrows: down-regulated miRs. APO:
Apoptosis; BCL2: BCL2 apoptosis regulator; BM: bone metastasis;
EMT: epithelial–mesenchymal transition; IGF-1R: insulin-like growth
factor receptor 1; INV: invasion; IRF2: interferon regulatory factor 2;
LLGL1: lethal giant larvae protein homolog 1; PROL: proliferation;
RANK: receptor activator of NFĸB ligand; RANKL: RANK ligand;
TGFβ1: transforming growth factor β1; TS: tumor suppressor.



Regarding miR-based therapy, many technical hurdles
which are not discussed in detail here have been identified.
Issues are targeting of miRs to tumor cells, efficacy of
intracellular escape, removal by the reticulo-endothelial
system, excretion by the kidneys, pharmaco-kinetic and
pharmaco-dynamic issues, immunogenicity, toxicity and
cytokine-release syndrome (149-154). Recently, the field has
experienced several set-backs, mainly due to toxicity issues
(155). It remains to be seen whether miRs are tools for
further target identification and whether miR-based therapy
is a viable strategy for treatment of SCLC.
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