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Abstract. Background: Prostate cancer (PCa) is a
multifactorial disease involving complex interactions
between genetic and physiological/environmental factors.
Vitamin D receptor (VDR) plays a role in numerous cellular
pathways and it has been suggested that VDR genetic
variants influence individual susceptibility to PCa. Materials
and Methods: Logistic regression analysis was used to assess
the association of six VDR single nucleotide polymorphisms
(SNPs) and factors such as tanning potential and UV
sunlight exposure with PCa risk. Results: Marginal
significant interactions were found, with a 2-fold increase
risk of PCa between SNP 1 (¢.278-69G>A) and sunlight UV
exposure [odds ratio (OR)=2.02, 95% confidence interval
(CI1)=1.036-4.36; p=0.05]; and a 4-fold increase risk of PCa
between SNP 4 (¢.907+75C>T) and tanning potential
(OR=440, 95% CI=0.89-29.12; p=0.0591). In contrast,
SNP 5 (rs731236, Taql) and tanning potential interaction
had a protective effect by reducing the risk of PCa by 55%
(B=-0.804; OR=0.448, 95% CI=0.197-9.42; p=0.0427).
SNPs 2 (rs61614328) and 6 (rs533037428) did not show any
association with PCa even in the presence of UV sunlight
exposure. Conclusion: The protective effect of SNP 4 from
PCa is lost and modified by tanning potential in African
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Americans. This finding needs to be verified by larger studies
in different ethnic populations.

Prostate cancer (PCa) has high incidence as well as high
mortality, which makes it an important worldwide health issue
(1, 2). Furthermore, PCa etiology is complex, involving many
risk factors such as age, vitamin D status, ethnic origin, and
family history of PCa (3, 4). Epidemiological studies suggest
that PCa risk may at least partly be determined by interactions
between the environment and genetic predisposition (5-7).
PCa rates are higher in African American men compared to
other ethnic groups in the United States (4, 5, 8). Additionally,
this group of men are more likely to be diagnosed at a later
stage of disease development.

PCa risk has been inversely associated with sun exposure.
In most individuals, about 90% of circulating levels of 25-
hydroxyvitamin D are derived from casual sun exposure (9).
In the United States, high residential sun exposure has been
associated with lower mortality rates and reduced risk for PCa
(10, 11). A case—control study by Luscombe et al. found a 3-
fold increased risk with low lifetime sun exposure (12).
Vitamin D is an important candidate implicated in PCa risk
and its deficiency has been hypothesized to be a risk factor for
PCa (13, 14). Reduced vitamin D levels correlate with
established risk factors such as increasing age, African
American ethnicity, and residence in northern latitudes (15).
Cordera et al. also used diagnostic serum samples from blood
to show that the risk of PCa decreased with higher levels of
1,25-dihydroxyvitamin D (6). The physiological and
environmental factors that modify the supply of cutaneous
vitamin D are levels of UV exposure, skin pigmentation, and
polymorphism in the vitamin D receptor (VDR) gene (16).

VDR polymorphisms have been studied as candidates for
PCa susceptibility by many investigators (17-20). The
expression or function of VDR may be influenced by
polymorphisms in the 3’ end. Polymorphisms in VDR might
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alter receptor function and affect PCa susceptibility. More than
60 VDR polymorphisms are located in the promoter, in and
around exons 2-9, and in the 3’UTR region (21, 22). Several
genetic studies have reported conflicting results on the
associations between VDR polymorphisms and PCa risk (17).
The significant effects of VDR polymorphisms and sunlight
exposure on PCa have been reported in our previous study
(23). As a follow-up to this, we investigated the specific
interactions  between individual single nucleotide
polymorphisms (SNPs) and other physiological/environmental
factors (UV sunlight exposure, tanning potential, vitamin D
level) with PCa risk.

Materials and Methods

Study subjects. Ninety-one African American men with
histologically diagnosed adenocarcinoma of the prostate and 92
African American controls were recruited from Howard University
Hospital. The Howard University Institutional Review Board (IRB-
02-MED-42) approved the study protocol, and informed consent
was obtained from the study participants. Demographics and
medical history details were previously described (7, 24). A blood
sample was collected prior to treatment from each participant using
vacutainers containing EDTA anticoagulant.

Serum 25-hydroxyvitamin D measurement. Enzyme immunoassay
from Immunodiagnostic Systems Ltd. (Immunodiagnostic Systems,
Fountain Hills, AZ, USA) was used for the quantitative
determination of 25-hydroxyvitamin D in serum (25, 26).

Polymerase chain reaction (PCR). Genomic DNA extraction was
performed using QIAmp DNA Blood Maxi Kit (Qiagen Inc.,
Valencia, CA, USA) according to the manufacturer’s instructions.
List of VDR primers and PCR conditions were as previously
described by Copeland er al. (27).

Denaturing high-performance liquid chromatography (DHPLC) and
DNA sequencing. The entire VDR gene was screened for germline
mutations by DHPLC instrument (WAVE® DNA Fragment Analysis
System; Transgenomics, Omaha, NE, USA) as previously described
(27). Genomic DNA was amplified using GeneAmp 9700 thermal
cycler (27) and purified by Qiagen column (QIAquick PCR
purification Kit 50; Qiagen, Inc., Valencia, CA, USA). The amplified
samples were sequenced using ABI 377 DNA sequencer (Applied
Biosystems, Foster City, CA, USA), and fluorescently labeled Big-
dye terminator cycle sequencing kit (Applied Biosystems, Foster City,
CA, USA). For further confirmation, samples were also sequenced
commercially by ACGT Incorporation (Wheeling, IL, USA).
Sequencher Version 4.8 software (Gene Codes Corporation, Ann
Arbor, MI, USA) was used to analyze the generated data, and SNPs
were identified using the International Hapmap project (http//:
www.hapmap.org;  https://www.ncbi.nlm.nih.gov/projects/SNP/).
Nomenclature for the identified SNPs was assigned according to den
Dunnen and Antonarakis (28), and the Reference SNP accession ID
(rs ID) was assigned for all previously reported SNPs using BLAST
SNP (http://www.ncbi.nlm.nih.gov/SNP/snp_blastByOrg.cgi).

Assessment of UVR exposure. Each participant answered questions
from the validated UV questionnaire (29). This questionnaire is
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designed to calculate the total amount of exposure (hours/year) to
UV light from childhood until the time of the interview. The
cumulative sunlight exposure for each participant was assessed by
a combination of his history of occupational and non-occupational
sunlight exposure as described previously (24).

Assessment of tanning potential. A computerized narrow-band
reflectometer (Mexameter®MX 18, Courage+Khazaka electronic
GmbH, Cologne, Germany) was used to measure the skin color
(24). The quantitative index of sun exposure (tanning potential) that
is related to cumulative lifetime sun exposure was calculated as
previously described (30, 31).

Statistical analyses. We employed several statistical methods to
determine the association of VDR SNPs and factors with PCa. Student’s
t-test and Mann—Whitney were used to determine if there were
differences in the mean of age, outdoor UV exposure, serum vitamin
D level, supplemental vitamin D, and dietary vitamin D between PCa
cases and controls before and after adjusting for age. Since the #-test
showed age to be a significant factor, logistic regression analysis was
carried out on the other factors by adjusting for age.

Furthermore, logistic regression was used to select the best
predictors among the detected SNPs and their interactions with the
physiological/environmental factors. The physiological/environmental
variables were standardized for logistic regression in determining the
effect of the interaction between the SNPs, factors, and PCa. The
association of SNPs, UV sunlight exposure, and tanning potential with
PCa risk were demonstrated using interaction plots.

Odds ratios (OR) and 95% confidence intervals (CI) were
calculated, adjusting for age. Estimates were considered statistically
significant for two-tailed values of p<0.05. All analyses were carried
out using SPSS version 26.0 (IBM, Armonk, NY, USA).

Results

Previously, we conducted a case—control study to investigate
the association of vitamin D, UV sunlight exposure, and
tanning potential with PCa. At the same time, we screened
the VDR gene for mutations/SNPs. We identified seven
distinct polymorphisms [SNP 1 (c.278-69G>A), SNP 2
(rs61614328), SNP 3 (rs11574114), SNP 4 (¢.907+75 C>T),
SNP 5 (rs731236, Tagql), SNP 6 (rs533037428), and SNP 7
(rs7975232, Apal)] (23). However, SNP 3 was detected in
only one case, therefore, this SNP was excluded from this
study. In this article, we further investigated the gene-
physiological/environmental interaction relating to PCa risk.

Before age-matching, Mann—Whitney test and Student’s z-
test showed significant differences between the cases and
controls for age and outdoor sunlight exposure (p=0.001),
while being marginally significant for supplemental vitamin
D intake (p=0.079). Men 60 years and older were found to
have a higher incidence of PCa compared to those younger
than 50 years, and the mean UV sunlight exposure was higher
in controls (5,017.2 h) than in cases (1,786.6 h). The mean
serum vitamin D levels for cases (26.8 ng/ml) and controls
(29.1 ng/ml) were both below the normal range (30-74 ng/ml)
(Table I). To ensure the difference in mean of outdoor UV sun
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Table 1. The mean values for physiological/environmental factors in unmatched cases and controls (N=182).

Characteristic Cases Controls p-Value
Mean Standard error Mean Standard error Student’s #-test Mann—-Whitney

Age, years 64.53 0.940 58.67 0.991 0.001 0.0001
UV sunlight exposure, h 1786.57 227.828 5017.18 857.055 0.001 0.0007
Serum vitamin D, ng/ml 26.75 1.612 29.06 1.475 0.291 0.2079
Supplemental vitamin D, mg/day 129.70 20.637 169.51 20.427 0.174 0.0791
Dietary vitamin D, mg/day 140.32 11.978 155.00 13.838 0.42 0.4157
Tanning potential, % 30.32 2.658 36.51 34813 0.16 0.3982

Statistically significant p-values are shown in bold.

Table 1. The mean values for physiological/environmental factors in age-matched cases and controls (N=106).

Characteristic Cases Controls p-Value
Mean Standard error Mean Standard error Student’s z-test Mann—Whitney

Age, years 60.9 1.146 60.9 1.1460 0.990 0.997
UV sunlight exposure, h 1846.98 373.131 6117.44 1360.832 0.003 0.044
Serum vitamin D, ng/ml 28.27 2.138 29.72 1.918 0.618 0.7
Supplemental vitamin D, mg/day 147.25 27.889 171.99 25.367 0.516 3.16
Dietary vitamin D, mg/day 156.67 17.538 146.06 20.538 0.689 0.857
Tanning potential, % 24.77 3.069 395 4.699 0.010 0.026
Statistically significant p-values are shown in bold.
Table II1. Association of age, UV sunlight exposure, vitamin D levels, and prostate cancer risk using logistic regression.
Variable B Standard error Odds ratio? 95% CI p-Value
Intercept -1.5252 0.6051 0.011
Age, years

40-49 1 (Ref)

50-59 0.697 0.678 2.008 0.531-7.592 0.304

60-69 2211 0.676 9.126 2.422-34.382 0.001

=70 2.167 0.714 8.734 2.154-35.416 0.002
UV sunlight exposure® -1.170 0.373 0.310 0.149-0.645 0.001
Serum vitamin DP -0.093 0.177 0911 0.643-1.289 0.598
Supplemental vitamin Db -0.050 0.180 0.950 0.667-1.355 0.778
Dietary vitamin Db 0.091 0.196 1.096 0.746-1.609 0.640
Tanning potential® —0.346 0.186 0.707 0.491-1.018 0.062

aAdjusted for age. PVariables are standardized. Statistically significant p-values are shown in bold.

exposure was not influenced by imbalances in ages of controls
and cases, we reanalyzed the data in pairs of men matched for
age. Significant differences were found only for UV sunlight
exposure (p=0.003) and tanning potential (p=0.01) (Table II).
Furthermore, significant associations were found between PCa
risk and age older than 60 years as well as tanning potential
(»=0.06) and outdoor UV sun exposure (p=0.001) (Table III).

The interactions between the individual VDR SNPs and
factors for PCa risk were analyzed using logistic regression
(Tables IV, V, and VI). VDR SNPs 4 and 5 showed a significant
protective effect by reducing PCa risk ($=-3.23, OR=0.039,
95% C1=0.0005-0.274, p=0.01670; and f=—1.884, OR=0.152,
95% CI=0.075-0.295, p:6.05><10'8, respectively). Notable
interactions with a 2-fold increase risk of PCa between SNP 1
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Table IV. Assessment of the most predictive vitamin D receptor (VDR) single nucleotide polymorphism (SNP) 1 (c.278-69G>A) interaction with
outdoor UV sunlight exposure concerning prostate cancer risk using logistic regression analysis.

Variable 5} Standard error Odds ratio 95% CI p-Value
Intercept -0.98 0.193 0.907 0.619-1.32 0.612
VDR SNP 1 0.237 0.311 1.27 0.690-2.34 0.446
UV sunlight exposure —0.48 0.279 0.619 0.348-1.049 0.0850
VDR SNP 1 x sunlight 0.702 0.361 2.02 1.036-4.361 0.0520

Table V. Assessment of the most predictive vitamin D receptor (VDR) single nucleotide polymorphism (SNP) 4 (¢.907+75C>T) interaction with
tanning potential (TP) concerning prostate cancer risk using logistic regression analysis.

Variable B Standard error Odds ratio 95% CI p-Value
Intercept 0.277 0.185 1.319 0.919-1.905 0.135
VDR SNP 4 -3.23 1.354 0.039 0.0005-0.274 0.0167
TP -0.54 0.203 0.584 0.385-0.855 0.00785
VDR SNP 5 x TP 1.482 0.785 4.40 0.891-29.12 0.0591

Statistically significant p-values are shown in bold.

Table VI. Assessment of the most predictive vitamin D receptor (VDR) single nucleotide polymorphism (SNP) 5 (rs731236) interaction with tanning
potential (TP) concerning prostate cancer risk using logistic regression analysis.

Variable B Standard error Odds ratio 95% CI p-Value
Intercept 1.082 0.260 2.95 1.816-5.062 2.964x10~5
VDR SNP 5 —-1.884 0.348 0.152 0.0750-0.295 6.05x10-8
TP 0.381 0314 1.463 0.817-2.848 0.2256
VDR SNP 5 x TP -0.804 0.397 0.448 0.197-0.942 0.0427

Statistically significant p-values are shown in bold.

and sunlight UV exposure (OR=2.02, 95% CI=1.036-4.36;
p=0.052); and a 4-fold increase risk of PCa between SNP 4
and tanning potential (OR=4.40, 95% CI=0.89-29.12;
p=0 .0591x10‘2) were found. In contrast, potential interaction
between SNP 5 and tanning had a protective effect by reducing
the risk of PCa by 55% (3=—0.804; OR=0.448, 95% C1=0.197-
9.42; p=0.0427). SNPs 2 and 6 did not show any association
with PCa even in the presence of UV sunlight exposure.
Furthermore, the significant interactions of the SNPs, UV
sunlight exposure, tanning potential with PCa risk were also
demonstrated using the interaction plot (Figures 1-3). An
increased risk of PCa was found with increase of UV sunlight
exposure and in the presence of SNP 1.

Discussion
Most of the emerging epidemiological evidence has shown

that VDR polymorphisms and vitamin D from sunlight
exposure play a role in the development of PCa. Liu er al.
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reported the association of six variants with PCa and their
cumulative effect (32). This relationship suggested that men
who carried any combination of 1, 2, or >3 risky genotypes
had a gradually increased PCa risk. However, Berndt et al.
did not find evidence to support an association between any
of the VDR polymorphisms and the risk of PCa (33). We
recently reported that VDR SNPs 4 (c907+75C>T) and 7
(rs7975232) play a significant role in the development of
PCa in African Americans (7, 23).

The cumulative effects of VDR polymorphism, UV
sunlight exposure, and vitamin D level on PCa risk has also
been investigated by other researchers (34, 35). North
American-based studies linking latitude with PCa mortality
have shown that UV radiation (UVR) has a protective effect
against the development of PCa (11, 34) and suggested that
the impact of VDR genotype might be evident in men with
certain levels of UVR exposure. Bodiwala et al. used a
median value of cumulative UVR exposure per year (1,100
h/year) and found no association below the median, while
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Figure 1. Demonstration of the most predictive vitamin D receptor
(VDR) single nucleotide polymorphism (SNP) 1 (c.278-69G>A)
interaction with UV sunlight exposure concerning prostate cancer risk
using the interaction plot.

VDR polymorphisms were associated with PCa risk in men
with UVR exposure levels above the median (19). In our
study, the mean sunlight UV exposure levels for the cases
(1,787 h/year) and the controls (5,017 h/year) were much
higher than that reported by Bodiwala et al. (19). The mean
UV sunlight exposure for the controls was almost three times
that of the cases, indicating the protective effect of UV
sunlight exposure against PCa. This is reflected by the
negative regression coefficient (f=-1.1704) between UV
sunlight exposure and PCa. Bodiwala et al. (16) and
Luscombe et al. (12) showed that the pathogenesis of PCa
in men with low levels of UVR exposure is different from
that in men with higher levels. Thus, VDR variants are not
associated with PCa risk in the group with a relatively low
UVR exposure. Levels of UVR exposure below the median
may be associated with PCa that develops because of relative
vitamin D deficiency, which appears to have been the case
in the present study (levels below 30 ng/ml).

Conflicting results have been reported on the effect of the
vitamin D level on PCa risk. Recent studies by Park et al. (30)
and Kiristal et al. (36) did not find any association of vitamin
D uptake with PCa risk. Huncharek et al. found no significant
association in a meta-analysis in observational studies
regarding diet, calcium, and vitamin D intake and the risk of
PCa (37). On the other hand, Bahar et al. showed that plasma
vitamin D <26 ng/ml was associated with a threefold risk for
PCa (38). A study by Murphy et al. showed that vitamin D
deficiency was associated with higher Gleason score and tumor
stage in both Caucasians and African Americans (39). This
means that vitamin D deficiency may play a role in influencing
the relationship between UV sunlight exposure and PCa risk.
Nevertheless, the inverse relationship between UV sunlight
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Figure 2. Demonstration of the most predictive vitamin D receptor
(VDR) single nucleotide polymorphism (SNP) 4 (c.907+75C>T)
interaction with tanning potential concerning prostate cancer risk using
interaction plot.
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Figure 3. Demonstration of the most predictive vitamin D receptor
(VDR) single nucleotide polymorphism (SNP) 5 (rs731236) interaction
with UV sunlight exposure concerning prostate cancer risk using the
interaction plot.

exposure and PCa risk has been reported by Liu ez al. (32). In
the United States, high levels of UV sun exposure were
associated with lower mortality rates and reduced risk of PCa
(34). Moreover, a case—control study from England revealed a
3-fold increased risk to be associated with a low lifetime UV
sunlight exposure (12). Results from our previous studies (23,
24) have shown that outdoor UV sunlight exposure was
associated with reduced PCa risk.

Conclusion

This study showed that the association of VDR SNPs with PCa
risk may be dependent on the level of UV sunlight exposure
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and the level of serum vitamin D. VDR variants are not
associated with PCa risk in men with relatively low UV
sunlight exposure and high serum vitamin D level. As sunlight
exposure increases, the risk of PCa decreases, which indicates
an inverse relationship between the two. Similarly, the risk of
PCa decreases with a diminution in tanning potential. Results
from this study also showed that UV sunlight exposure has a
protective effect against PCa when the vitamin D level is not
limiting. Overall, these findings provide additional information
for future epidemiological and functional studies in African
Americans. The generated data of gene—physiological/
environmental factors interaction from this study is important
for discovery of novel genetic risk factors, risk prediction, and
identification of certain high-risk populations to outline public
health strategies for targeted prevention.
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