
Abstract. Non-motile cilia are thought to be important
determinants of the progression of many types of cancers.
Our goal was to identify patterns of cilia gene dysregulation
in eight cancer types (glioblastoma multiforme, colon
adenocarcinoma, breast adenocarcinoma, kidney renal clear
cell carcinoma, lung squamous cell carcinoma, lung
adenocarcinoma, rectal adenocarcinoma, and ovarian
cancer) profiled by The Cancer Genome Atlas. Among these
types, 2.5-19.8% of cilia-associated genes were significantly
differentially expressed (versus 5.5-32.4% dysregulation
across all genes). In four cancer types (breast
adenocarcinoma, colon adenocarcinoma, glioblastoma
multiforme, and ovarian cancer), cilia genes were on
average down-regulated (median fold change from –1.53-
–0.3), in the other four types, cilia genes were up-
regulated (fold change=0.86-3.5). Pairwise comparisons
between cancer types revealed varying degrees of
similarity in the differentially expressed cilia genes,
ranging from 7.1% (ovarian cancer and lung squamous
cell carcinoma) to 65.8% (ovarian cancer and rectal
adenocarcinoma). Hierarchical clustering and principal
components analysis of gene expression identified
glioblastoma multiforme, colon adenocarcinoma, breast
adenocarcinoma; and kidney renal clear cell carcinoma,
lung squamous cell carcinoma, lung adenocarcinoma,
rectal adenocarcinoma, and ovarian cancer as sub-classes
with similar dysregulation patterns. Our study suggests
that genes involved in cilia biosynthesis and function are
frequently dysregulated in cancer, and may be useful for
identifying and classifying cancer types.

Cilia are organelles present on the surface of the majority of
human cell types. There are two classes of cilia: motile and
non-motile. Non-motile (primary) cilia are generally sensory
organelles that are involved in signal transduction, response
to chemicals in the external environment, and cellular growth
and differentiation (1). Cilia also play an important
developmental role in tissue and organ patterning, including
cell adhesion/communication in the brain and the heart.
Unsurprisingly, primary cilia are associated with a number
of human diseases, or ciliopathies, such as polycystic kidney
disease, Bardet–Biedel syndrome, and Meckel–Gruber
syndrome (2).

Primary cilia have also been implicated in cancer, and
tumorigenesis in particular, as a consequence of the
involvement of primary cilia in cell-cycle regulation. At the
molecular level, the most studied system is ciliary regulation
of the hedgehog (Hh) signaling pathway, which has been
shown to be abnormally activated in many different types of
cancers (3-6) The presence of primary cilia can either
increase or reduce tumorigenesis and cancer progression,
depending on whether early oncogenic events occurred
upstream or downstream of Hh activity, respectively. This
dual role for primary cilia has major therapeutic implications
because ciliogenesis inhibitors may enhance or reduce tumor
growth depending on the type of cancer (7).

Changes in primary cilia are also observable at the
histological and anatomical level. Specifically, the loss of
primary cilia has been observed in a wide range of cancer types
and has been shown to be associated with greater progression
and poorer prognosis (6-11). Some types of cancer, such as
basal cell carcinoma and medulloblastoma, retain their cilia (7),
while others, such as breast and pancreatic cancer, lose their
cilia (6, 12). These studies have suggested that primary cilia
loss is not simply driven by increased replication rates of the
cancer cells. Rather, cilia loss likely occurred through somatic
mutation or other causes of dysregulation in the cancer
genome. Further work is required to establish a causal link
between cilia and cancer, since it is unclear whether changes
in cilia genes are key to carcinogenesis, or simply a general
consequence of gene dysregulation or enhanced mutation rates. 
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One way to investigate this question is to ask whether cilia
gene dysregulation patterns are congruent with overall
patterns of gene dysregulation in cancer. As there have been
no studies that comprehensively examined dysregulation of
ciliary gene expression in cancer, we focus specifically on
the expression patterns of ciliary genes in eight common
types of human cancer. The principal goals of the present
study were a) to identify differentially expressed cilia genes
in each cancer type, b) to use patterns of dysregulation across
cilia genes as a criterion for classifying cancer, and c) to
compare patterns of dysregulation in cilia genes to overall
patterns of dysregulation across all genes.

Materials and Methods
Gene expression dataset. Gene expression data were collected from
The Cancer Gene Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/ )
for eight different cancer types: invasive breast carcinoma (BRCA),
colon adenocarcinoma (COAD), glioblastoma multiformae (GBM),
kidney renal clear-cell carcinoma (KIRC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian serous
cystadenocarcinoma (OV), rectal adenocarcinoma (READ). This
study only included cancer for which Level 2 expression data from
Agilent custom gene expression microarrays was available for both
tumor and control samples (healthy tissue samples from the same
organ as the tumor, typically from different individuals rather than
as paired samples). The Agilent G4502A custom microarray
contains 244,000 probes that assay the expression of 21,232 genes.
Table I summarizes the types and number of samples of each cancer
that were included in the present study. 

Ciliome dataset. In order to survey a broad set of genes associated
with cilia structure and function, we obtained version 3.0 of the
ciliary proteome database (freely available at http://
v3.ciliaproteome.org/cgi-bin/index.php) (6, 12). This database
integrates information from several lines of evidence including
comparative genomics, mass spectroscopy and transcriptome
analyses to produce a comprehensive data set of genes associated
with cilia biosynthesis, regulation or function. We selected the
reciprocal best hits (RBH) database, which only contains the proteins
that were identified as RBHs via BLAST in the human genome and
in the original species in which the gene was identified. To filter the
RBH database, we used the default cut-off value of 1e-10 without
any additional filters. This approach yielded a dataset of 1,920 ciliary
proteins that overlap with the gene set covered in the expression
probes; we note that since there is no direct experimental verification
of cilia expression or function for all genes considered in this study,
this is probably an overestimate of ciliome size (that is, it is unlikely
that cilia genes make up over 9% of the human genome). 

Further characterization and classification of the ciliary proteins
was obtained from the DAVID functional annotation and
bioinformatics resource (http://david.abcc.ncifcrf.gov/gene2gene.jsp)
(13). In order to determine whether dysregulated cilia genes are
characterized by particular structural motifs and/or by their roles in
specific functional pathways, enrichment analysis was applied to the
gene set. DAVID’s enrichment analysis tool combines information
from multiple gene annotation ontologies (e.g. Gene Ontology: GO
and Kyoto Encyclopedia of Genes and Genomes: KEGG) to identify
clusters of genes with shared functional or structural properties, and

determines whether a data set is enriched in that functional class
relative to background frequencies (across the entire genome) using
a Fisher’s exact test. DAVID computes an enrichment score for the
intersection among subclasses of genes characterized by a given
function. The score of the intersection among these subclasses is
computed from the geometric mean of the enrichment score within
each subclass (see (14, 15)).

Statistical analysis. Apart from the DAVID enrichment analysis, all
statistical analyses were performed in R (version 2.14) using the
Bioconductor package (16), (http://www.bioconductor.org/). Level
2 gene-expression data were pre-processed by the TCGA, and
included LOESS normalization (17), and transformation of
expression levels onto a log base 2 scale. We independently fit linear
models (18) to each set of transformed gene-expression
measurements to compute standard error test statistics for contrasts
between gene expression levels in tumor versus control samples.
Empirical Bayes factors (posterior statistics derived from moderated
t-distributions) were used to determine the significance of the
difference in expression level of each gene in cancer versus control
samples. The p-values derived from the empirical Bayes factors
were adjusted for multiple comparison (over 21,232 genes) using
the Benjamini–Hochberg false-discovery rate (FDR) correction.
Significantly differentially expressed genes were defined as those
with both a minimum two-fold change in expression level between
cancers and controls, and a significance threshold of α=0.001 after
the FDR correction to the p-values.

Those genes which showed significant dysregulation across
different cancer types were selected to construct fold-change data
matrices. Each gene was characterized by the difference between
the mean value of its expression level across samples within a
specific cancer and its mean expression level among the control
samples. Pairwise Euclidean distances of these vectors of fold
change values across cancers were computed, and hierarchical
clustering was used to identify cancers with similar patterns of
regulation among cilia genes and similarities in expression profiles.

Principal component analysis (PCA) was applied to the entire set
of expression levels (i.e. all genes in the data set, including both
those that are significantly dysregulated and those that are not) in
order to characterize general patterns of covariation across fold
change in expression levels, and to contextualize specific cancer
types in gene space and cilia genes of interest in the cancer space.
Because there are a total of 21,232 variables (genes) and only eight
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Table I. A summary of cancer data sets from listed by cancer type,
where the numbers in the last column are the number of tumor and
control samples, respectively.

Abbreviation Cancer n, (Tumor/Controls)

BRCA Breast invasive carcinoma 431/35
COAD Colon adenocarcinoma 169/7
GBM Glioblastoma multiformae 517/19
KIRC Kidney renal clear cell carcinoma 70/2
LUAD Lung Adenocarcinoma 32/2
LUSC Lung squamous cell carcinoma 135/5
OV Ovarian serous cystadenocarcinoma 585/23
READ Rectum adenocarcinoma 69/6



observations (types of cancer), R-mode principal component vectors
were computed using a singular value decomposition of the matrix
of fold change in expression levels in order to reduce the
dimensionality of gene space to eight independent vectors. Each
cancer could then be quantified by its transformed score in this eight
dimensional expression space. In contrast, Q-mode principal
components were used to define gene expression levels in cancer
space, and were computed directly from covariances in expression
levels across cancer types. 

Loadings of gene expression levels onto the first Q-mode
principal component eigenvectors were obtained by computing the
projections (inner products) of gene fold-change values across
cancer types onto the first eigenvector. These loadings were used as
a heuristic to capture the degree to which expression patterns of
individual genes are concordant with the underlying global
covariances in expression patterns across the majority of genes. K-
means clustering (19) was carried out on cancers in the space of the
first two R-mode principal component axes in order to locate cancer
types in the reduced space of gene expression levels. 

The first Q-mode principal component was also exploited to
adjust the fold-change values in the expression data matrices.
Subtracting the loadings of each gene onto the first Q-mode
principal component allows one to distinguish expression patterns
in specific cilia genes from overall statistical trends across the entire
data set. Specifically, we used adjusted fold changes:

(Eq. 1)

where rij is the fold change of probe j in cancer sample i, vi is the ith
element of the first principal component v (in Q-mode sample
space), and ρ is defined by the projection:

(Eq. 2)

This form of adjustment is analogous to the approach used to
correct for allelic stratification data in (20), although here it is used
to identify variation in patterns of gene expression that are not
congruent with those across the genome as a whole, as opposed to
co-variation in genotype or phenotype due to genealogical
relatedness. 
Hierarchical clustering of the eight cancer types was then carried
out using Euclidean distances of the vectors of adjusted fold change
expression values rij.

Results
Global gene expression patterns. We conducted a
comprehensive comparison of differential gene expression
across all cancer types surveyed, which is summarized in
Table II. The proportion of differentially expressed genes
ranged from 5.6% (LUAD) to 32.7% (OV). The differentially
expressed genes were (on average) up-regulated with respect
to controls in five cancer types (COAD, KIRC, LUAD,
LUSC, READ) and down-regulated in three (BRCA, GBM,
OV). The number of shared differentially expressed cilia
genes was investigated among pairs of cancer types, and we

found that the overlap in such genes across cancer types
ranged from as high as 68.8% (in LUAD and READ, relative
to LUAD) to as low as 7.3% (in LUAD and OV, relative to
OV). The average proportion of dysregulated genes shared
between any cancer pair was 31.8%. 

The differentially expressed genes can be further classified
according to the number of cancer types in which they are
significantly dysregulated. Out of the 21,232 genes surveyed,
the majority (13,660) were dysregulated in at least one
cancer type. Considering only those that were differentially
expressed in the majority (>4) of the cancer types, we found
that there were 31 genes dysregulated across all eight cancer
types surveyed, 315 shared across at least seven out of the
eight (not necessarily the same seven), 543 shared across at
least six, and 1,068 shared genes among at least five of the
eight cancer types.

Hierarchical clustering of the cancer types by Euclidean
distance in fold changes across all probes is shown in
Supplementary Figure S1 (Supplementary data are available
from the first author upon request), which identifies two
subclusters: COAD, BRCA, GBM form a cluster distinct
from the remaining five cancer types. The two subsets
largely, but not entirely, correspond to cancer types where
most differentially expressed genes are up-regulated versus
those types in which they are down-regulated. The two
counter examples to this pattern are COAD and OV. The
differentially expressed genes in COAD are on average up-
regulated, yet COAD clusters with BRCA and GBM (whose
differentially expressed genes tend to be down-regulated). In
contrast, the differentially expressed genes in OV are on
average up-regulated, yet its expression profile clusters with
cancer types whose genes are down-regulated on average.
This indicates that the average direction of dysregulation is
not necessarily a reliable indicator of overall similarity of
gene expression profiles within a cancer type. 

Ciliary gene expression patterns. In order to characterize
gene dysregulation in the ciliome, we identified cilia genes
among the global set of differentially expressed genes found
in all cancer types (Table II). Genes identified by the cilia
proteome database constitute 9.04% of the total number of
genes surveyed in the study. In contrast, we observed that
cilia genes constitute between 3.8% (LUSC) to 8.7% (KIRC)
of all differentially expressed genes among the cancer types,
with a mean proportion of 5.2% across all cancer types in
the survey.

In all cancer types except COAD, the mean fold change
in cilia gene expression was consistently in the same
direction (up-regulation or down-regulation) as the mean fold
change across all expressed genes. In contrast, the mean fold
change among all differentially expressed genes in COAD
was 1.15 (slightly more than two-fold up-regulation), while
for the cilia genes, the mean fold change was –1.53.
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Further annotation of differentially expressed cilia genes
using DAVID’s functional clustering tool revealed
enrichment of cilia genes in several pathways and structural
roles. Specifically, among genes that were dysregulated in at
least five out of eight cancer types, we found significant
enrichment scores (p<0.05 following FDR correction) for
those characterized by phospho-binding loop motifs. Smaller
subsets of dysregulated cilia genes had significant
enrichment scores identified with acetylation, endomembrane
system, protein transport, phosphoprotein, and protein
localization.

Similarity and variation in cilia gene expression patterns
among cancer types. A comparatively limited subset of cilia
genes (42) are dysregulated over a more than half of the
cancer types in the survey. Table III lists genes according to
the number of cancer types in which they are significantly
dysregulated: 3 cilia genes are differentially expressed in
seven of the cancer types, 12 differentially expressed in
(exactly) six, and 27 differentially expressed in five. We
remark that while there are no cilia genes dysregulated in all
eight of the cancer types when expression levels are filtered
by both a minimum two-fold change and p<0.001 as tests
for significance, two genes (MYH11 and FMN2) are
dysregulated in all eight cancer types if significant
dysregulation is determined solely by the p-value condition.

To contrast the shared pairwise similarity in ciliome
dysregulation with shared similarity over all genes, we
computed an enrichment score, a ratio that measures the
fraction of cilia genes in cancer type i that are also
dysregulated in type j with respect to the fraction of all
shared dysregulated genes between the two cancer types.
Specifically, let Ni and Nj be the total number of
dysregulated genes in cancer types i and j, respectively, and
ni, nj be the number of dysregulated cilia genes in cancer
types i, j. We similarly defined Nij and nij as the respective
number of total dysregulated genes and the number of
dysregulated cilia genes shared between i, j. The enrichment
value of shared cilia genes Eij is defined as an odds ratio,
nij/ni divided by Nij/Ni, i.e.

(Eq. 3)

For example, BRCA and COAD share 60 dysregulated cilia
genes, which make up 32.2% of the total number of
dysregulated cilia genes (186) in COAD. Similarly, BRCA
and COAD share 1,101 dysregulated genes overall, this
intersecting set makes up 26% of the total set of 4,240 genes
dysregulated in BRCA. The ratio of 32.2 to 26% gives an
enrichment value of 1.24 for BRCA against COAD. An
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Table II. A tally and summary statistics for differentially expressed genes for each cancer type. The second and fourth columns are the total number
of genes that show significant dysregulation among the entire set and among cilia genes, respectively. The third and fifth columns are the median and
mean (in parentheses) fold change between expression levels in the cancer and control samples for the total data set (third column) and the ciliary
set (fifth). 

Cancer type Differential expression, n FC, median/mean (SD) Ciliary differential expression, n Ciliary FC, median/mean (SD)

BRCA 4456 –0.95/-0.08 (1.3) 231 –0.93/–0.22 (1.1)
COAD 4240 1.15/0.23 (2.5) 186 –1.53/–0.26 (2.5)
GBM 4027 –0.95/–0.16 (1.6) 225 –0.30/–0.25 (1.5)
KIRC 2117 3.20/3.26 (1.2) 185 2.93/3.19 (1.2)
LUAD 1191 3.30/3.40 (1.0) 48 3.55/3.51 (0.9)
LUSC 2280 2.62/2.30 (1.7) 86 2.44/2.17 (1.6)
OV 6949 –1.18/–0.29 (1.5) 354 –1.22/–0.56 (1.3)
READ 4231 1.88/0.85 (2.4) 197 1.77/0.86 (2.23)

Table III. List of the cilia genes that are dysregulated in precisely 7, 6, and 5 of the 8 cancer types, respectively.

Number of shared cancer types Genes

7 FMN2, MYH11, TMOD1
6 CENPE, CALU, CNN3, EIF3D, GANAB, FEN1, MPP2, NUDC, PDXK, RAB6A, STX1A, TMCC2
5 ABCF2, ADRM1, BCAT1, CNDP2, COG2, CSPG4, DGKI, DMXL2, DOCK7, 

EXOC7, FLNA, FXR1, GNAZ, GSTT2, ITSN1, MMAB, MYO5A, NOMO1, PA2G4, 
PADI2, RAB3A, RAB9A, SBDS, TMED4, TNPO1, WDR66, XPO1



enrichment value close to 1 suggests that the overlap in
differentially expressed cilia genes is consistent with the
overall similarity among dysregulated genes. Values greater
than unity suggest an enrichment for shared differentially
expressed cilia genes, while values less than one suggest
under-representation. 

Table IV shows the values of Eij for all pairs of cancer
types. Averaged over all cancer pairs, the relative proportion
of shared cilia genes was 0.95, suggesting a slightly lower
representation of shared dysregulated cilia genes with respect
to the proportion of all shared differentially expressed genes.
BRCA shared the most differentially expressed cilia genes
with the other cancer types, ranging from 1.35 (with respect
to KIRC) to 0.98 (LUAD) enrichment (median=1.24). By
comparison, LUAD shared the fewest differentially
expressed cilia genes with other cancer types, ranging from
0.56 (KIRC) to 0.92 (READ) enrichment (median=0.76).
Note that the shared fractions are asymmetric, i.e. Eij ≠ Eji,
because the denominator in each ratio is determined by the
number of dysregulated genes specific to a particular cancer.

The extent of concordance in dysregulation patterns
among genes across the different cancers was also quantified
by their loadings on the first principal components axis. The
first two of eight Q-Mode PCA axes account for 62.03 and
14.73% of the variance (Figure 1) in fold change expression
level variation. Genes with large absolute loadings on the

first PCA axis are those that are jointly dysregulated within
several cancer types. We took the 1,062 genes (the upper
5%) that had the highest absolute value loadings on the first
principal component axis, and found that 32 out of the 42
‘majority-rule’ dysregulated cilia genes were in this upper
percentile of first PCA loading, with two additional cilia
genes in the highest loadings for projections on principal
component axes 1 and 2. 

The relationship between statistically significant
dysregulation and first PCA loading was not absolute, even
among the three genes that were dysregulated in seven
cancer types, one of them (FMN2) does not appear in the
upper 5% of loadings on the first two principal component
axes. Table V lists genes from the above set of 42 that have
upper 5% loading scores on PCA axis 1 and jointly on PCA
axes 1 and 2.

Genes identified in the ciliome have a broad range of specific
roles in cells which can be characterized through functional
annotation. Functional clustering (based on significant
enrichment scores computed using the DAVID database) of the
42 genes that were significantly dysregulated in a majority of
cancers shows significant enrichment with respect to
cytoskeleton, mitosis and cytokinesis, protein transport, vesicle
transport, and guanyl (GTP) binding pathways. The
Supplementary Table SI (Supplementary data are available from
the first author upon request) provides DAVID’s functional
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Table IV. Pairwise comparison of cilia genes differentially expressed in all cancer types. Each row i and column j represents a cancer type. The first
entry in block i, j is the total number of cilia genes that are significantly dysregulated in both cancer i and j. The value in parentheses is the
enrichment value Eij (as defined in equation 3), which compares the fraction of dysregulated cilia genes in cancer i that are also dysregulated in j
to the fraction of dysregulated genes found overall in cancer i that are also dysregulated in cancer j.

Cancer type BRCA COAD GBM KIRC LUAD LUSC OV READ

BRCA × 60 (1.050) 75 (1.402) 33 (1.238) 11 (0.7633) 29 (0.9449) 116 (1.176) 62 (1.042)
COAD 60 (1.24) × 64 (1.066) 32 (0.8423) 27 (0.9145) 35 (0.7563) 90 (1.050) 94 (1.012)
GBM 75 (1.30) 64 (0.8373) × 26 (0.6884) 20 (0.8117) 32 (0.7771) 111 (1.129) 65 (1.001)
KIRC 33 (1.346) 32 (0.7745) 26 (0.8062) × 17 (0.5603) 27 (0.6380) 41 (0.8467) 34 (0.7272)
LUAD 11 (0.9818) 27 (0.9954) 20 (1.125) 17 (0.6632) × 21 (0.6386) 26 (0.8249) 33 (1.059)
LUSC 23 (1.299) 35 (0.8795) 32 (1.151) 27 (0.8070) 21 (0.6823) × 59 (1.066) 52 (1.033)
OV 116 (1.197) 90 (0.9046) 111 (1.238)) 41 (0.7929) 26 (0.6527) 59 (0.7895) × 121 (0.9104)
READ 62 (1.159) 94 (0.9536) 65 (1.201) 34 (0.7451) 33 (0.9169) 52 (0.9499) 121 (0.9961) ×

Table V. Cilia genes with highest absolute value loadings on Q-mode principal components axes 1 and combined loadings on principal component
axes 1 and 2. Principal component vectors were computed from fold changes over the set of all genes.

Top 5% of principal component 1 loadings FMN2, CENPE, CNN3, EIF3D, FEN1, MPP2, NUDC, PDXK, RAB6A, ABCF2, ADRM1, BCAT1,
CNDP2, COG2, DMXL2, DOCK7, EXOC7, FLNA, FXR1, GNAZ, ITSN1, MYO5A, NOMO1, PA2G4,
PADI2, RAB3A, RAB9A, SBDS, TMED4, TNPO1, WDR66, XPO1

Top 5% of principal component 1+2 loadings FMN2, CENPE, CALU, CNN3, EIF3D, FEN1, MPP2, NUDC, PDXK, RAB6A, TMCC2, ABCF2,
ADRM1, BCAT1, CNDP2, COG2, DMXL2, DOCK7, FLNA, FXR1, GNAZ, GSTT2, ITSN1, MMAB,
MYO5A, NOMO1, PA2G4, RAB3A, RAB9A, SBDS, TMED4, TNPO1, WDR66, XPO1



characterization of the 42 cilia genes that are differentially
expressed across five or more of the cancer types.
Clustering of cancer types with respect to gene expression.
Hierarchical clustering of cancer types according to expression
levels of the 42 significantly dysregulated cilia genes identifies
two groups of cancer types as subtrees (Figure 2). The
resulting topology of the dendrogram is largely consistent with
that computed from all 21,232 genes in the sample
(Supplementary Figure S1), apart from having OV as an
outgroup to LUAD, LUSC, and READ rather than in a single
node with READ. Meanwhile, if all cilia genes are included
(Figure 3), most of the nodes and sub-trees in the dendrogram
are entirely congruent with the tree structure derived from
distances over all genes (the exception being COAD as an out-
group to all other cancer types on a very short branch with
respect to the BRCA and GBM pair). These dendrograms
suggest that patterns of differential expression across all genes
in cancer genomes are mirrored in the ciliome.

Figures 2, 3 and S1 also identify two clusters of cancer
types in gene expression space with distinct dysregulation
profiles, a result that is also supported by K-means clustering
in PCA space (see below). The two clusters are COAD,
BRCA and GBM, and KIRC, LUAD, LUSC, OV and
READ, respectively. The dendrogram implies that there will
be some cilia genes that are uniquely dysregulated in most
of the cancer types in one subset but not the other, as well
as a smaller subset dysregulated in both groups of cancer

types. The Venn diagram shown in Figure 4 was constructed
by applying a majority rule to identify subset-specific
dysregulation, i.e. cilia genes that were dysregulated in at
least two out of the three in the GBM group and at least
three out of the five in the LUSC cluster. There were 130
cilia genes uniquely dysregulated in the subset containing
GBM and 59 uniquely dysregulated in the subset containing
LUSC, with 25 in the intersection.

Functional clustering using DAVID indicated significant
enrichment in dysregulated cilia genes related to intracellular
transport, vesicle mediated transport, and protein/
macromolecule localization in the GBM cluster. Surprisingly,
there were no statistically significant functional enrichments
specific to the LUSC cluster (indicating that no particular
functional subgroup was disproportionately represented),
while the intersecting subset had weakly-significant
enrichment for cytoskeletal components. Supplementary
Tables SII and SIII (Supplementary data are available from
the first author upon request) list the annotation sets and the
enrichment scores for intersection of sets of genes that are
dysregulated in the COAD, GBM and BRCA, and the KIRC,
OV, READ, LUSC and LUAD classes, respectively. 

Projecting fold changes of cilia gene expression levels for
each cancer type onto the first two R-mode principal
component axes gives clusters consistent with the
dendrograms shown in Figure 2 and S1, i.e. the same subsets
of three and five cancer types. This can be seen in the K-
means clustering (for K=2 centers, in order to test
consistency with the two subgroups identified through
hierarchical clustering) in Figure 5. 
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Figure 1. Eigenvalues 1-8 derived from Q-mode principal component
analysis on the data set of fold change over all genes in the eight cancer
types. The eigenvalues are normalized to show the fraction of variance
expressed by each principal component.

Figure 2. Hierarchical clustering (dendrogram) of cancer types, derived
from a Euclidean distance matrix using median fold change in the
expression levels of the 42 cilia genes that are significantly dysregulated
in at least five out of the eight types of cancers.



When the fold change values of cilia genes were adjusted
by subtracting their projections onto the first Q-mode
principal component axis (from the eight PCA eigenvectors
computed from the set of all 21,232 genes), we obtain a set
of measurements that captures variational properties of gene
expression levels that are not concordant with overall
tendencies and directions among the entire set of genes. The
resulting topology of the dendrogram (Figure 6) differs from
that in Figures 2 and S1. For instance, READ and OV no
longer share a common node, nor do GBM and BRCA.

Clustering of cilia gene expression across cancer types. The
42 cilia genes that are dysregulated in at least five of the
cancer types are hierarchically clustered in Figure 7. While
groups of genes form clearly defined sub-trees with short
branches, indicating very similar patterns of dysregulation
across cancer types, these subsets do not correspond to
specific functional pathways identified using DAVID. For
example, cytoskeleton genes FMN2, CNN3, and TMOD1 are
dysregulated in cancer types that appear in different subtrees.
The same is observed in mitosis and cytokinesis genes
BCAT1, NUDC, and DOCK7, and among membrane protein
genes CSPG4 and MPP2.

Discussion 

The present study identified genes with hypothesized cilia-
related function that were dysregulated in cancers, among
them, 42 that were dysregulated in at least 5 of the cancer
types surveyed. The comparatively weak pairwise overlap
may suggest that different sets of cilia genes are dysregulated

in different cancers, but to a certain extent it also reflects the
number of independent tumor samples available for each
cancer, since larger tumor datasets possessed greater
statistical power to detect for differential gene expression.
For instance, LUAD had the smallest sample sizes for both
cancer and control, while OV had the largest, so not
surprisingly, we identified the fewest dysregulated genes in
LUAD and the most in OV.

More generally, the results of this study suggest that
dysregulation of gene expression in the ciliome mirrors
broader patterns of the entire cancer genome. This can be
seen most clearly from the fact that dendrograms of cancer
types derived from Euclidean distances in expression levels
across all genes (Supplementary Figure S1) have essentially
the same topology as those based on cilia genes, including
the more restricted set with significant fold change across a
majority of cancer types (Figure 2). Moreover, there is no
evidence that dysregulation of the ciliome plays a
disproportionate role in cancer, since, if anything, the
fraction of significantly dysregulated cilia genes relative to
all dysregulated genes tends to be smaller than the fraction of
identified cilia genes relative to the entire set, as can be seen
from the ratios in Table II. Even the fraction of pairwise
shared cilia genes was generally slightly smaller than the
pairwise shared genes from the overall pool (Table IV).

Nevertheless, differential expression of particular cilia genes
is an important aspect of cancer biology. There are a number
of cilia genes that are dysregulated across multiple cancers,
including three that were differentially expressed in seven of
the eight surveyed. For instance, dysregulation of MYH11 has
been identified in previous expression array studies as
contributing to colorectal cancer (21, 22), while TMOD1 has
been found to be strongly antigenic in pancreatic and ovarian
cancer (23). Similarly, FMN2 has been recognized for its role
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Figure 3. Hierarchical clustering (dendrogram) of cancer types, derived
from the matrix of Euclidean distances of fold change values across the
set of all 1,920 cilia genes.

Figure 4. Venn diagram showing the number of cilia genes uniquely
dysregulated in the cluster [COAD, GBM, BRCA], in the cluster [KIRC,
OV, READ, LUSC, LUAD], and in both sets (intersection). The larger
subset of genes is found in the COAD group.



in a tumor-suppressor pathway, specifically, in preventing
degradation of the cell-cycle inhibitor P21, thereby controlling
the rate of cell division (24).

We note that dysregulation of particular cilia genes is not
necessarily consistent across multiple cancers. For instance,
the FMN2 gene was significantly up-regulated relative to the
control samples in some types of cancer while being
significantly down-regulated in others. This accounts for the
fact that of the 42 dysregulated cilia genes, only 32 had
loadings on the upper 5% of projection scores on the first

principal component axis. Essentially, differential gene
expression in opposing directions accounts for weak loadings
of the remaining 10 genes (including FMN2).

Since the first principal component captures most of the
co-variation in gene expression, the goal of adjusting fold
changes values by subtracting their regression on the first
PCA axis was to identify those variational aspects of
differential expression that are not following the overall
trends in the genome. Consequently, the fact that the resulting
dendrogram (Figure 6) on the adjusted scores had a different
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Figure 5. K-Means clustering of cancer types. Each cancer type’s coordinate values (and the Euclidean distances among points representing cancer
types) were defined by their loadings on R-mode principal components 1 and 2 (i.e. R-mode principal component analysis on fold change in
expression level across all cilia genes). It can be seen that the two principal components separate the cancer types into the same clusters as the
hierarchical clustering shown in Figures 2 and 3.



topology (particularly with regard to pairwise associations)
than the clusters derived from unadjusted scores indicates the
existence of dysregulation patterns that are specific to
particular subsets of cilia genes among cancers. Strong
dysregulation over a comparatively small subset of genes may
also account for the reason why clusters defined by Euclidean
distance on the unadjusted scores (specifically, the subsets of
five and three cancer types) were not fully congruent with
subsets defined by whether the average direction of
dysregulation tended to be positive or negative.

Genes identified in the ciliary proteome were by no means
closely related to one another in either their functional
pathways or their expression patterns. For instance, when
genes were clustered by their expression levels across
cancers (Figure 7), those with significant enrichment scores
for cytoskeletal function (e.g. TMOD1, CNN3, FMN2) are
scattered throughout the dendrogram, as opposed to being
members of a single, congruently dysregulated subset. The
same was true for genes associated with protein transport
(e.g. FLNA, CNDP2), mitosis/cytokinesis (e.g. BCAT1, NUC,
DOCK7), cell membrane proteins (CSPG4, MPP2) and a
wide range of other categories and pathways. Presumably,
this is due to the fact that while oncogenesis often involves
dysregulation of genes in similar functional roles (e.g. cell
signaling, cell-cycle regulation, adhesion) , they need not be
the same set of genes in each role. For example, BCAT1 and

NUDC are both expressed during mitosis. The former is
dysregulated in (among others) GBM, but not in BRCA,
despite the fact that the two cancer types share similar
overall expression patterns. Similarly, the plasma membrane
gene CSPG4 is differentially expressed in OV but not in
GBM or KIRC, while another plasma membrane gene MPP2
is dysregulated in GBM but not in KIRC.

A potential caveat to consider in cluster analysis is whether
the similarities and associations in expression patterns reflect
differences in gene expression in cancer, or just differential
gene expression across the tissue types that gave rise to
cancer. In other words, could it be that the difference in
expression patterns between GBM and OV simply reflects
gene expression in glial versus ovarian cells? To some degree,
this concern is addressed by the fact that we define phenotype
not by raw expression level but by the fold change in
expression between cancer and controls (albeit not necessarily
samples from the same patient). We can further address this
concern by noting that cluster analysis of gene expression
profiles across normal, healthy tissue types does not give the
same dendrograms as those we found in cancer genomes. 

The dendrogram in Figure 8 is modified after Figure 1 in
(25), which was computed by hierarchical clustering of
Euclidean distances of gene expression levels from different
tissue types (we only show those tissues/organs corresponding
to the tumor samples and to the control). Their results
indicate that healthy ovary, lung, and breast tissue shared a
common node, indicating similar expression profiles. In
contrast, our dendrograms in Supplementary Figure S1 and
Figures 2 and 3 suggest that cancers of these tissues did not
have similar expression profiles, either overall or among cilia
genes. Furthermore, among the cancers surveyed, OV and
READ share the highest proportion of dysregulated genes
while healthy ovarian tissues do not have expression profiles
similar to healthy colon cells. These contrasts suggest that the
differences in gene expression between tumor cells and the
control tissue samples are typically specific to the cancer
rather than the source tissues.

We also remark that the cilia genes themselves have
products that have a wide range of functional roles. Among
them are cytoskeletal genes that regulate mitosis and
cytokinesis (e.g. BCAT1, DOCK7, NUDC, CENPE), calcium-
binding proteins involved in endoplasmic reticulum function
(e.g. CALU), plasma membrane proteins (MPP2 and CSPG4),
guanyl binding proteins (including several RAB genes), and a
number of genes involved in protein and vesicle transport (e.g.
FLNA, CNDP2). Most of these functions are not directly
associated with primary cilial structure as such. Consequently,
it is not clear whether observed loss or modification of
primary cilia (3, 5, 8) is a contributing cause to carcinogenesis
or a secondary manifestation due to dysregulation of genes
that drive other processes in cell biology, quite apart from their
possible roles in the ciliome.
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Figure 6. Hierarchical clustering (dendrogram) of cancer types on
adjusted fold changes of expression levels in the 42 significantly
dysregulated cilia genes that are shared across cancers. The
dendrogram was computed from Euclidean distances among adjusted
gene expression values, defined as the raw fold change for each gene
expression level across the different cancer types, minus the projection
of these values onto the first Q-mode principal component (PCA in
‘sample space’), as defined in equations 1-2.



A notable absence from the set of dysregulated ciliary genes
are those that are known to be associated with the hedgehog
signaling pathway. Out of the 1,092 cilia genes, only five were
functionally-related to the hedgehog pathway. Among these,
two were dysregulated in more than a single type of cancer.
One of these, RAB23, is an oncogene involved in GTPase-
mediated signal transduction and has been identified in a
number of developmental abnormalities (26) and in cancer.
The other, FKBP8, is an immunophilin involved in protein

trafficking and neuronal development (27). Dysregulation of
both RAB23 (28) and FKBP8 (29) has been documented in a
number of cancer types, particularly primary gastric cancer.
More generally, since disruption of the hedgehog pathway has
been previously identified as being of significant importance
in a number of cancer types (1, 30), the absence of SHH, DHH
genes and most downstream elements from the analysis are a
consequence of the scope of the cilia proteome database’s
search criteria and working definitions.
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Figure 7. Hierarchical clustering (dendrogram) of the 42 cilia genes that are significantly dysregulated in at least five types of cancer, clustered by
their similarity of expression patterns across cancer types. Each gene was represented as a vector of length 8, the values of which were fold change
of expression levels of that gene in every cancer type. The hierarchical clustering was derived from a distance matrix computed from the Euclidean
distances across all pairs of genes.



Conclusion
Regardless of whether their dysregulation is cause or
consequence in oncogenesis, changes in the expression level
of cilia genes is closely related to dysregulation across the
genome and the breakdown of a wide range of cellular
structures and physiological processes. Consequently, further
functional studies of cilia genes and their targeted pathways
can identify useful markers of cancer progression, and may
even serve as suitable drug targets for therapy.
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