
Abstract. Background: Oncoprotein genes are over-represented
in statically defined, low mutation-frequency fractions of cancer
genome atlas (TCGA) datasets, consistent with a higher driver
mutation density. Materials and Methods: We developed a
“continuously variable fraction” (CVF) approach to defining
high and low mutation-frequency groups. Results and
Conclusion: Using the CVF approach, an oncoprotein set was
shown to be associated with a TCGA, low mutation-frequency
group in nine distinct cancer types, versus six, for statically
defined sets; and a tumor-suppressor set was over-represented
in the low mutation-frequency group in seven cancer types,
notably including BRCA. The CVF approach identified single-
mutation driver candidates, such as BRAF V600E in the thyroid
cancer dataset. The CVF approach allowed investigation of
cytoskeletal protein-related coding regions (CPCRs), leading to
the conclusion that mutation of CPCRs occurs at a statistically
significant, higher density in low mutation-frequency groups.
Supporting online material for this article can be found at
www.universityseminarassociates.com/Supporting_online_materi
al_for_scholarly_pubs.php

The cancer genome atlas (1) (http://cancergenome.nih.gov/)
and related cancer DNA sequence databases (2) have
provided an opportunity for exploiting statistical power to
discover commonalities in the genetics, and possibly the
advent of cancer. We recently made a number of conclusions
(3) by segregating five cancer genome atlas datasets into
high and low mutation-frequency groups: (i) coding region

mutagenesis is largely random, with almost no difference in
the occurrence of silent versus amino acid changes in the
high and low mutation-frequency groups; (ii) the vast
majority of coding regions mutations occur in very large
coding regions, consistent with the significant stochastic
aspect to coding region alterations; (iii) a disproportionate
representation of tumor suppressor proteins in the low
mutation-frequency group could not be established; (iv) a
disproportionate representation of oncoproteins in the low-
mutation-frequency groups could be established for only two
of the five TCGA datasets. In those two cases, COAD and
LUAD, the disproportionate association of oncoproteins with
the low mutation-frequency groups relied on the likelihood
that oncoproteins often represent degenerate signaling
pathways (4) and could, thus, be grouped for increased
statistical power, i.e. an oncoprotein set, rather than
individual oncoproteins, was observed to associate with the
COAD and LUAD low mutation-frequency groups.

In the present report, the basic algorithm of dividing the
TCGA datasets into high and low mutation-frequency groups
has been encoded (scripted), thus allowing the development
of a continuously variable definition of “high” or “low”
frequency groups via the increased computing power. With
a variable definition, an over-representation of mutations in
any low frequency group (in comparison to the analogous
high frequency group) can be detected, rather than relying
on such detection in one arbitrarily defined low frequency
group. This computational approach has provided for a
substantial increase in detection of candidate driver
mutations.

Materials and Methods
Mutation Annotation Format (MAF) files from the TCGA database
containing only somatic mutations detected in tumor samples were
downloaded as tab-delimited files from the TCGA data portal. All
3,158,693 mutations detected within 6,482 tumor samples contained
in 26 MAF files spanning 24 TCGA datasets were inserted into
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various tables of a single PostgreSQL 9.3.5 relational database.
Queries or database views to select the disease, HUGO symbol of
mutated gene, gene type (oncoprotein, tumor suppressor protein,
cytoskeletal protein, or none), codon change, start position, and end
position of each mutation allow the count of total mutations as well
as the count of mutations of a certain gene type, gene, and/or gene
with a specific codon change for each dataset. The queries have also
been designed to select only distinct mutations, keeping in mind that
each dataset (cancer type) within the TCGA collection can be
compared to one or more matched normal samples, potentially (and
erroneously) giving rise to multiple records for identical mutations
within a given tumor sample.

After the total mutation counts have been determined, the individual
datasets are sorted by their number of total mutations and separated
into high and low mutation-frequency groups containing N samples
(TCGA barcodes), with N ranging from 2 (minimum required for
statistical testing) to half the total number of samples (maximum
without duplicating samples). After the samples are sorted, the ratio
of occurrence of particular gene types (oncoprotein, tumor suppressor
protein, cytoskeletal protein) as well as each gene with a specific
codon change, relative to the total number of mutations is calculated.

However, no mutations were further considered unless the mutation
occurred at a minimum of 25-times in the pan-cancer database. The
p-value from a two-tailed two-sample t-test, assuming unequal
variances, is used to determine the level of significance at which the
mean ratio in the high mutation-frequency group is not equal to the
mean ratio in the low mutation-frequency group for any mutation that
occurs more than 24 times in the database. Matlab® R2014a was used
to query the PostgreSQL database, sort tumor samples, and calculate
the reported p-values. All code is available in the supporting online
material (SOM) (www.universityseminarassociates.com/Supporting_
online_material_for_scholarly_pubs.php).

Ethics statement. The corresponding author submitted and received
approval for TCGA-use proposal, although all data in this report are
publicly available.

Results 
Initial work was based on single, arbitrary definitions for
high and low mutation-frequency groups (3), reproduced
herein, via scripting the initial algorithm; and with additional
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Table I. Ratio of high mutation-frequency group, oncoprotein and tumor suppressor protein occurrence, to low mutation-frequency group, oncoprotein
and tumor suppressor protein occurrence, using approach of Parry et al (3).  

TCGA Ratio of number Ratio of number  p-Value for Ratio of number p-Value for 
dataset of total mutated of oncoprotein coding disproportionate of tumor suppressor disproportionate 

coding regions region mutations representation of coding region mutations representation of 
in high frequency- in high frequency- oncoprotein coding in high frequency- tumor suppressor 
mutation group to mutation group to regions in the mutation group to protein coding regions 
low frequency- low frequency- low frequency-  low frequency- in the low frequency-  
mutation group mutation group mutation group mutation group mutation group

ACC 9.16 8.5 NS 9.33 NS
BLCA 7.76 7 NS 7.18 NS
BRCA 190.28 (infinity) NA 94 NS
CESC 3.64 1.66 NS 2.05 NS
COAD 53.00 9.09 0.016 26.7 NS
GBM 4.41 3 NS 3.71 NS
HNSC 26.69 13.5 NS 15.57 NS
KIRC 14.01 5 NS 2.6 0.008
KIRP 3.44 0.8 NS 4.25 NS
LAML 12.71 1.11 0.008 (infinity) NA
LGG 45.55 6.5 NS 25.66 NS
LIHC 680.25 138.28 NS 321.42 NS
LUAD 51.07 7.9 0.006 25 NS
LUSC 6.84 3 NS 5.53 NS
OV 8.82 1.66 NS 3 NS
PRAD 10.58 6 NS 9.5 NS
READ 9.72 4.18 NS 6.69 NS
SKCM 131.67 16.09 0.001 87.66 NS
STAD 79.55 122 NS 34.2 NS
THCA 11.42 1.46 0.0002 (infinity) NA
UCEC 17.45 3 0.0003 4.06 0.001
UCS 5.08 1.57 NS 3.2 NS

Driver mutations would be expected to be over-represented in the low mutation-frequency groups.  Thus, driver mutations would be indicated by a
lower ratio than the ratio of overall mutations, for a given dataset.  See SOM Table 1 data for details, including references for the list of oncoproteins
and tumor suppressor proteins included in the above analyses.  “Infinity” refers to absence of a member of the oncoprotein or tumor suppressor
protein sets in the low frequency mutation group. NS, Not significant; NA, not applicable.



TCGA datasets (Table I). Results of the scripted version of
the algorithm were identical for the previously studied
datasets. Several TCGA datasets not previously studied
indicated a disproportionate level of oncoprotein coding
region mutations (LAML, SKCM, THCA, UCEC) in the low
mutation-frequency groups. And for the first time, this
approach indicated a disproportionate level of tumor
suppressor mutations in previously unstudied datasets
(KIRC, UCEC), in the low mutation-frequency groups. 

To search for statistical significance of a disproportionate
association of oncoprotein and tumor suppressor sets with
the low mutation-frequency groups, with the same basic
paradigm, but with the CVF strategy, we plotted p-values
against continuous fractions for definitions of the high and
low mutation-frequency groups (Methods; SOM;
(www.universityseminarassociates.com/Supporting_online_m
aterial_for_scholarly_pubs.php), with results consistent with
BRAF as an oncoprotein (Figure 1). We repeated this
approach with the previously defined oncoprotein and tumor
suppressor sets (3), again keeping in mind extensive
signaling pathway degeneracy in cancer (4) (Table II).
Results indicated an association of one or the other or both
cancer-gene sets with TCGA datasets where the approach
using fixed mutation group fractions did not lead to such

detection, illustrating the increased opportunities of the
modification represented by the CVF approach. In particular,
we detected a significantly increased association of the
oncoprotein set, with the low mutation-frequency group, in
three additional TCGA datasets: HNSC, LIHC and UCS
(Compare Tables I and II). We detected increased association
of the tumor suppressor set with the low mutation-frequency
group in five additional datasets: BRCA, COAD, HNSC,
LUAD and STAD.

To determine whether the CVF approach had the resolving
power of detecting a disproportionate association of individual
mutations and genes with the low mutation-frequency group,
we applied the algorithm to every mutation position in the
TCGA database. Results with a p<0.01 are indicated in Table
III; results with a p<0.05 are indicated in Table S3 in the SOM
(www.universityseminarassociates.com/Supporting_online_ma
terial_for_scholarly_pubs.php); and in Excel files in the SOM.
As expected, a number of well-studied mutations and genes,
such as BRAF, with the V600E amino acid alternation, were
readily detected as disproportionately associated with the low
mutation-frequency groups, in particular for the SKCM
(Figure 1B and Table III) and THCA datasets (Table III). In
addition, numerous mutations were specifically associated
with the high mutation-frequency mutation groups, which
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Table II. TCGA datasets with oncoprotein set or tumor suppressor set associations.  

TCGA Oncoprotein Lowest Fractional Association with Tumor  Lowest Fractional Association with 
dataset set  p-value point High or Low suppressor set p-value point High or Low 

association frequency- association frequency-
mutation group mutation group 

ACC Yes 0.039 0.021 High Yes 0.0052 0.087 High
BLCA Yes 0.009 0.069 High No NA NA
BRCA Yes 1.34E-6 0.073 High Yes 5.86E-7 0.074 Low
CESC No NA NA No NA NA
COAD Yes 1.29E-5 0.309 Low Yes 3.05E-5 0.031 Low
GBM No NA NA Yes 0.002 0.041 High
HNSC Yes 0.029 0.467 Low Yes 0.00002 0.257 Low
KIRC Yes 0.003 0.085 High Yes 0.00003 0.497 Low
KIRP No NA NA Yes 0.034 0.06 High
LAML Yes 0.0007 0.497 Low Yes 0.019 0.324 High
LGG No NA NA No NA NA
LIHC Yes 0.00004 0.48 Low Yes 0.00006 0.049 High
LUAD Yes 7.07E-22 0.434 Low Yes 0.0007 0.327 Low
LUSC No NA NA Yes 0.044 0.016 High
OV Yes 0.037 0.07 High No NA NA
PRAD No NA NA Yes 0.0002 0.073 High
READ No NA NA Yes 0.018 0.049 High
SKCM Yes 3.38E-12 0.425 Low Yes 2.57E-8 0.035 High
STAD Yes 1.04E-5 0.032 High Yes 0.0003 0.482 Low
THCA Yes 7.83E-20 0.412 Low Yes 0.0001 0.12 High
UCEC Yes 4.14E-8 0.340 Low Yes 4.96E-8 0.396 Low
UCS Yes 0.038 0.491 Low No 0.034 0.052 High

Bold values represent associations detectable with a CVF approach and not detectable with the approach of Parry et al. (3).
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could represent numerous possibilities including lack of a
driver status, i.e., an artifact of high level mutagenesis; or a
requirement for cooperation with other mutations for driver
status (with such cooperation only occurring when there is
high enough level of mutagenesis for “two hits”).

Other coding regions, less well connected with the study
of cancer, have been significantly associated with the low
mutation-frequency mutation groups, representing several
different cancer datasets, at p<0.05 but p>0.01: SKCM,
MYO5B,GTC>GCC (nucleotide position, 47363917); HNSC
AQP7,AGT>AGA(33385614); ACC KRT8,TCC>GCC
(53298675); LIHC; KRT8,TCC>GCC(53298675) (Table S3,
SOM).

Large coding regions are particularly susceptible to the
stochastic process that plays a large role in the mutational
process, as reflected by the TCGA datasets (3). The role of
gene size in mutational susceptibility is consistent with large
gene size being a significant factor in gene-partner inclusion in
cancer fusion genes (5, 6). Cytoskeletal protein related coding
regions (CPCRs), many of which are among the largest coding
regions in the human genome (3), have long been thought to
play a role in cancer development and metastasis, but with
contradictory conclusions (7-13). Interestingly, a recent report
indicated a CPCR mutation associated with breast cancer
metastasis to the lymph node (14).
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Figure 1. Plot of p-value versus fractional definition of the high and low
mutation-frequency groups. p-Value is on y-axis; fraction of TCGA
dataset on x-axis. The x-axis represents a continuously variable fraction
of the TCGA dataset used to simultaneously define the high and low
mutation-frequency groups. For example, at a fraction of 0.2, the
mutation-frequency group was defined by the 20% of samples
representing the fewest mutations; and by the 20% of samples
representing the highest number of mutations in the dataset. Then, a p-
value was calculated for the significance of the difference between the
ratio of the overall number of mutations in the high frequency group to
the low frequency group, in comparison for the number of mutations in
the high and low frequency groups for the indicated proteins or groups of
proteins. This process first indicated over-representation of oncoproteins
in low frequency mutation groups in ref. (3). (A) COAD TCGA dataset;
TS (tumor suppressor and metastasis suppressor proteins as a group, as
defined in ref. (3)); OP (oncoprotein group as defined in ref. (3)); CPCR
(cytoskeletal protein related coding regions as defined in SOM
(www.universityseminarassociates.com/Supporting_online_material_for_
scholarly_pubs.php) for this article, represented by the following HUGO
symbols: TTN, APC, MUC16, NEFH, SYNE1, FAT4, SSPO, PLEC,
MUC4, NEB, DNAH11, DNAH8, PCDHAC2, PCDHGC5, FLG, NF1,
PCLO, SPTA1, PKHD1, DNAH5, RELN, XIRP2, FAT3, PCDH15, ANK2,
DST, FBN2, COL11A1, SPTAN1. (B) Same as (A), but for SKCM TCGA
dataset; and with indication of the p-value as a function of high/low
frequency fractional definition for the BRAF V600E mutation.

→

Table III. Individual mutations disproportionally associated with the high or low mutation-frequency groups with a p-value <0.01.

TCGA dataset HUGO symbol, codon change Amino acid change High or low Pubmed cancer entries 
and nucleotide number as of 12/16/2014

HNSC PARG,GCA>ACA(51093329) Ala > Thr High 85
TP53,CGG>TGG(7577539) Arg > Trp Low 7983

KIRC EEF1B2,CCG>CCA(207025366) Pro > Pro (repeat of 3) High 3
LGG IDH1,CGT>CAT(209113112) Arg > His Low 950
LUAD CHEK2,AAG>GAG(29091840) Lys > Glu Low 913

KRAS,GGT>GAT(25398284) Gly > Asp Low 7581
KRAS,GGT>TGT(25398285) Gly > Cys Low -
KRAS,GGT>GTT(25398284) Gly > Val Low -

PRAD RGPD8,CCT>GCT(113127775) Pro > Ala High 0
EEF1B2,AGC>GGC(207025358) Ser > Gly High 3

SKCM BRAF,GTG>GAG(140453136) Val > Glu Low 5344
STAD TRIM48,TAC>CAC(55035844) Tyr > His High 0

RGPD3,AAC>GAC(107049681) Asn > Asp High 0
UBBP4,ATC>ACC(21731270) Ile > Thr High 0
CR1,CGA>TGA(207787753) Arg > stop High NA (overlap term)
PGM5,ATC>GTC(70993145) Ile > Val High 1

THCA BRAF,GTG>GAG(140453136) Val > Glu Low -
UCEC PIK3CA,GAG>AAG(178936091) Glu > Lys Low 1682

PIK3CA,CAT>CGT(178952085) His > Arg Low -
TRIM48,TAC>CAC(55035844) Tyr > His High 0

HSD17B7P2,AAT>AGT(38654432) Asn > Ser High 0
PTEN,CGA>GGA(89692904) Arg > Gly Low 6814

Codons, nucleotide number and amino acid change are indicated; shaded HUGO symbols represent particularly novel cancer associations.



To determine whether CPCRs as a class (3) (SOM: Excel
file: list of CPCRs) (www.universityseminarassociates.com/
Supporting_online_material_for_scholarly_pubs.php) could
represent mutated, candidate driver genes, we determined
whether there was disproportionate representation of CPCR
genes in the low mutation-frequency groups using the
approach of Parry et al., with a static definition of high and
low mutation-frequency groups (Table IV), and with a CVF
approach (Figure 1 and Table V). Results indicated a highly
significant, disproportionate presence of CPCR mutations in
the low mutation-frequency groups for numerous TCGA
datasets. 

Discussion

The above results indicate that varying the fraction of samples
included in defining high and low mutation-frequency groups,
dramatically extends the usefulness of a mutation density-based
approach to identifying candidate driver mutations, i.e. leads to
identification of a greater number of candidate driver mutations.
All data-mining-based algorithms used for identification of
candidate drivers identify just that: candidates. Furthermore,
there is the presumption that empirical work is required for
verification of the function of the candidate driver mutation in

vivo. However, the above CVF approach readily identifies
several known oncoproteins, such as IDH1 and BRAF V600E.
Thus, other mutations and genes revealed by the CVF approach,
hitherto not considered extensively in oncogenesis, are likely to
be revealed as functionally relevant with empirical approaches,
for example, MYO5B, discussed above (Table S3).

It is likely, at a low level of statistical significance, that
background mutagenesis would be identified by the CVF
approach. For example, cells having few mutations could have
a higher density of mutations due to DNA replication error
rates that are more common (repeated) at one position in the
genome, in comparison to cells with a very high mutation rate
due to greater exposures to mutagens, for example. The high
concentration of mutagens could conceivably overwhelm a
propensity for a high replication error rate (with a bias for a
particular genome position), and thus such background
mutations would be detected as statistically “significantly”
associated with the low mutation-frequency group. Indeed,
Table S3 (SOM) (www.universityseminarassociates.com/
Supporting_online_material_for_scholarly_pubs.php) lists
several silent mutations, all of which have a p-value<0.05 but
greater than 0.01.  

It is also likely that a more comprehensive application of
statistical tools would enhance the yield from what is
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Table IV. Ratio of high mutation-frequency mutation group CPCR mutations to low mutation-frequency group CPCR mutations, using approach of
Parry et al (3).  

TCGA dataset Ratio of number of Ratio of number of p-Value for disproportionate 
total mutations in high CPCR mutations in high representation of CPCRs in 

frequency mutation group to frequency mutation group to either the high or low 
low frequency-mutation group low frequency-mutation group frequency-mutation group

ACC 9.16 12.75 NS
BLCA 7.76 4.07 0.002
BRCA 190.28 145 NS
CESC 3.64 3.05 NS
COAD 53.00 19.43 0.0003
GBM 4.41 3.3 NS
HNSC 26.69 36.42 NS
KIRC 14.01 22.5 0.014
KIRP 3.44 3.14 NS
LAML 12.71 12 NS
LGG 45.55 34.45 NS
LIHC 680.25 910.58 NS
LUAD 51.07 62.38 NS
LUSC 6.84 7.00 NS
OV 8.82 11.8 NS
PRAD 10.58 28.66 0.013
READ 9.72 5.70 0.043
SKCM 131.67 176.80 NS
STAD 79.55 48.93 NS
THCA 11.42 21 NS
UCEC 17.45 12.76 NS
UCS 5.08 6.75 NS

NS, Not significant.



fundamentally a mutation density based approach to
identifying cancer driver genes. However, the clear and
dramatic identification of positive controls, such as BRAF
V600E in the SKCM (melanoma) dataset, indicate that the
current statistical analysis is productive.

CPCRs are extensively mutated in many cancers (3), but
understanding the role of these mutations is complicated by
the large sizes of the CPCR coding regions. Large coding
region sizes make routine experimental approaches, for
example, DNA transfections, difficult, and thus there is less
groundwork available to justify more extensive approaches,
such as generating mice with relatively sophisticated genetic
engineering features. In addition, past research regarding the
cytoskeleton in tumorigenesis has been contradictory (7, 12,
13, 15-17). Thus, the CVF approach offers a third avenue of
investigation, for the study of CPCRs that circumvents the
impracticality of conventional experimental approaches. In
particular, several of the mutations indicated as significantly
associated with the low mutation-frequency group at the
p<0.05 level, e.g., MYO5B and KRT8, are related to the
cytoskeleton and cell shape functions. 

The above CPCR results raise the question of whether
cell-shape changes that accompany a disorganized
cytoskeleton are due to the relatively common mutation of

very large, genetically vulnerable CPCRs? The above results
also raise the question of whether the common spheroid
shape of cancer-drug resistant cells (18-25) is traceable to
the same genetic vulnerability, leading to cells with reduced
surface area to volume ratios and thus cells with lower
intracellular drug concentrations? 

Interestingly, as noted by inspection of Table IV, three of the
TCGA data sets (BLCA, COAD, READ) demonstrate an
association of CPCR mutations with the low mutation-
frequency groups; and two of the TCGA datasets (KIRC,
PRAD) indicate that the CPCRs are associated with the high
mutation frequency groups. This latter result raises the question
of whether the tumorigenic effects of CPCR mutations in
certain cancer types occur only with a high mutation burden,
where there is the greater possibility that a CPCR mutation will
cooperate with mutations of other groups of proteins, such as
conventional oncoproteins or tumor suppressor proteins?

Supporting Online Material

www.universityseminarassociates.com/Supporting_online_material_
for_scholarly_pubs.php

Supporting online material can also be obtained by emailing
Authors.
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Table V. TCGA datasets with mutated, cytoskeletal protein-related coding regions (CPCRs) associated with the high or low mutation-frequency
groups.  

TCGA dataset CPCR set association Lowest p-value Fractional point
(with the high or low frequency group)?

ACC Yes 0.037 0.043
BLCA Yes 0.0001 0.5
BRCA No NA NA
CESC No NA NA
COAD Yes 4.43E-13 0.436
GBM No NA NA
HNSC No NA NA
KIRC Yes 0.0002 0.055
KIRP No NA NA
LAML Yes 0.0008 0.045
LGG Yes 0.001 0.01
LIHC Yes 0.001 0.287
LUAD Yes 1.19E-5 0.251
LUSC Yes 0.015 0.011
OV Yes 0.0002 0.077
PRAD Yes 6.02E-5 0.5
READ Yes 0.014 0.222
SKCM Yes 0.002 0.284
STAD Yes 0.025 0.238
THCA Yes 0.0005 0.049
UCEC Yes 0.007 0.324
UCS No NA NA

Bold values represent associations detectable with a CVF, for definition of high and low frequency-mutation groups, that were not detectable by the
Table IV approach of Parry et al. (3).
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